IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v625y2024i7995d10.1038_s41586-023-06890-z.html
   My bibliography  Save this article

Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly

Author

Listed:
  • Constantine Glen Evans

    (California Institute of Technology
    Evans Foundation for Molecular Medicine
    Maynooth University)

  • Jackson O’Brien

    (University of Chicago)

  • Erik Winfree

    (California Institute of Technology)

  • Arvind Murugan

    (University of Chicago)

Abstract

Inspired by biology’s most sophisticated computer, the brain, neural networks constitute a profound reformulation of computational principles1–3. Analogous high-dimensional, highly interconnected computational architectures also arise within information-processing molecular systems inside living cells, such as signal transduction cascades and genetic regulatory networks4–7. Might collective modes analogous to neural computation be found more broadly in other physical and chemical processes, even those that ostensibly play non-information-processing roles? Here we examine nucleation during self-assembly of multicomponent structures, showing that high-dimensional patterns of concentrations can be discriminated and classified in a manner similar to neural network computation. Specifically, we design a set of 917 DNA tiles that can self-assemble in three alternative ways such that competitive nucleation depends sensitively on the extent of colocalization of high-concentration tiles within the three structures. The system was trained in silico to classify a set of 18 grayscale 30 × 30 pixel images into three categories. Experimentally, fluorescence and atomic force microscopy measurements during and after a 150 hour anneal established that all trained images were correctly classified, whereas a test set of image variations probed the robustness of the results. Although slow compared to previous biochemical neural networks, our approach is compact, robust and scalable. Our findings suggest that ubiquitous physical phenomena, such as nucleation, may hold powerful information-processing capabilities when they occur within high-dimensional multicomponent systems.

Suggested Citation

  • Constantine Glen Evans & Jackson O’Brien & Erik Winfree & Arvind Murugan, 2024. "Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly," Nature, Nature, vol. 625(7995), pages 500-507, January.
  • Handle: RePEc:nat:nature:v:625:y:2024:i:7995:d:10.1038_s41586-023-06890-z
    DOI: 10.1038/s41586-023-06890-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06890-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06890-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:625:y:2024:i:7995:d:10.1038_s41586-023-06890-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.