IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v625y2024i7993d10.1038_s41586-023-06822-x.html
   My bibliography  Save this article

A light-driven enzymatic enantioselective radical acylation

Author

Listed:
  • Yuanyuan Xu

    (Nanjing University)

  • Hongwei Chen

    (Nanjing University)

  • Lu Yu

    (Chinese Academy of Sciences)

  • Xichao Peng

    (Nanjing University)

  • Jiawei Zhang

    (Nanjing University)

  • Zhongqiu Xing

    (Nanjing University)

  • Yuyan Bao

    (Nanjing University)

  • Aokun Liu

    (Chinese Academy of Sciences)

  • Yue Zhao

    (Nanjing University)

  • Changlin Tian

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Yong Liang

    (Nanjing University
    Henan University)

  • Xiaoqiang Huang

    (Nanjing University)

Abstract

Enzymes are recognized as exceptional catalysts for achieving high stereoselectivities1–3, but their ability to control the reactivity and stereoinduction of free radicals lags behind that of chemical catalysts4. Thiamine diphosphate (ThDP)-dependent enzymes5 are well-characterized systems that inspired the development of N-heterocyclic carbenes (NHCs)6–8 but have not yet been proved viable in asymmetric radical transformations. There is a lack of a biocompatible and general radical-generation mechanism, as nature prefers to avoid radicals that may be harmful to biological systems9. Here we repurpose a ThDP-dependent lyase as a stereoselective radical acyl transferase (RAT) through protein engineering and combination with organophotoredox catalysis10. Enzyme-bound ThDP-derived ketyl radicals are selectively generated through single-electron oxidation by a photoexcited organic dye and then cross-coupled with prochiral alkyl radicals with high enantioselectivity. Diverse chiral ketones are prepared from aldehydes and redox-active esters (35 examples, up to 97% enantiomeric excess (e.e.)) by this method. Mechanistic studies reveal that this previously elusive dual-enzyme catalysis/photocatalysis directs radicals with the unique ThDP cofactor and evolvable active site. This work not only expands the repertoire of biocatalysis but also provides a unique strategy for controlling radicals with enzymes, complementing existing chemical tools.

Suggested Citation

  • Yuanyuan Xu & Hongwei Chen & Lu Yu & Xichao Peng & Jiawei Zhang & Zhongqiu Xing & Yuyan Bao & Aokun Liu & Yue Zhao & Changlin Tian & Yong Liang & Xiaoqiang Huang, 2024. "A light-driven enzymatic enantioselective radical acylation," Nature, Nature, vol. 625(7993), pages 74-78, January.
  • Handle: RePEc:nat:nature:v:625:y:2024:i:7993:d:10.1038_s41586-023-06822-x
    DOI: 10.1038/s41586-023-06822-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06822-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06822-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingrui Li & Yingtao Wu & Xiao Song & Jiaqiong Sun & Zuxiao Zhang & Guangfan Zheng & Qian Zhang, 2024. "Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Mengfan Li & Xu Cheng, 2024. "Aggregation-induced C–C bond formation on an electrode driven by the surface tension of water," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:625:y:2024:i:7993:d:10.1038_s41586-023-06822-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.