Author
Listed:
- Wei-Lei Wang
(Xiamen University)
- Weiwei Fu
(University of California, Irvine
Fudan University)
- Frédéric A. C. Le Moigne
(Univ Brest, CNRS, IRD, Ifremer, LEMAR)
- Robert T. Letscher
(University of New Hampshire)
- Yi Liu
(University of California, Irvine
Princeton University)
- Jin-Ming Tang
(Xiamen University)
- François W. Primeau
(University of California, Irvine)
Abstract
The transfer of photosynthetically produced organic carbon from surface to mesopelagic waters draws carbon dioxide from the atmosphere1. However, current observation-based estimates disagree on the strength of this biological carbon pump (BCP)2. Earth system models (ESMs) also exhibit a large spread of BCP estimates, indicating limited representations of the known carbon export pathways3. Here we use several decades of hydrographic observations to produce a top-down estimate of the strength of the BCP with an inverse biogeochemical model that implicitly accounts for all known export pathways. Our estimate of total organic carbon (TOC) export at 73.4 m (model euphotic zone depth) is 15.00 ± 1.12 Pg C year−1, with only two-thirds reaching 100 m depth owing to rapid remineralization of organic matter in the upper water column. Partitioned by sequestration time below the euphotic zone, τ, the globally integrated organic carbon production rate with τ > 3 months is 11.09 ± 1.02 Pg C year−1, dropping to 8.25 ± 0.30 Pg C year−1 for τ > 1 year, with 81% contributed by the non-advective-diffusive vertical flux owing to sinking particles and vertically migrating zooplankton. Nevertheless, export of organic carbon by mixing and other fluid transport of dissolved matter and suspended particles remains regionally important for meeting the respiratory carbon demand. Furthermore, the temperature dependence of the sequestration efficiency inferred from our inversion suggests that future global warming may intensify the recycling of organic matter in the upper ocean, potentially weakening the BCP.
Suggested Citation
Wei-Lei Wang & Weiwei Fu & Frédéric A. C. Le Moigne & Robert T. Letscher & Yi Liu & Jin-Ming Tang & François W. Primeau, 2023.
"Biological carbon pump estimate based on multidecadal hydrographic data,"
Nature, Nature, vol. 624(7992), pages 579-585, December.
Handle:
RePEc:nat:nature:v:624:y:2023:i:7992:d:10.1038_s41586-023-06772-4
DOI: 10.1038/s41586-023-06772-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:624:y:2023:i:7992:d:10.1038_s41586-023-06772-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.