IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v623y2023i7986d10.1038_s41586-023-06683-4.html
   My bibliography  Save this article

Neural signal propagation atlas of Caenorhabditis elegans

Author

Listed:
  • Francesco Randi

    (Princeton University
    Regeneron Pharmaceuticals)

  • Anuj K. Sharma

    (Princeton University)

  • Sophie Dvali

    (Princeton University)

  • Andrew M. Leifer

    (Princeton University
    Princeton University)

Abstract

Establishing how neural function emerges from network properties is a fundamental problem in neuroscience1. Here, to better understand the relationship between the structure and the function of a nervous system, we systematically measure signal propagation in 23,433 pairs of neurons across the head of the nematode Caenorhabditis elegans by direct optogenetic activation and simultaneous whole-brain calcium imaging. We measure the sign (excitatory or inhibitory), strength, temporal properties and causal direction of signal propagation between these neurons to create a functional atlas. We find that signal propagation differs from model predictions that are based on anatomy. Using mutants, we show that extrasynaptic signalling not visible from anatomy contributes to this difference. We identify many instances of dense-core-vesicle-dependent signalling, including on timescales of less than a second, that evoke acute calcium transients—often where no direct wired connection exists but where relevant neuropeptides and receptors are expressed. We propose that, in such cases, extrasynaptically released neuropeptides serve a similar function to that of classical neurotransmitters. Finally, our measured signal propagation atlas better predicts the neural dynamics of spontaneous activity than do models based on anatomy. We conclude that both synaptic and extrasynaptic signalling drive neural dynamics on short timescales, and that measurements of evoked signal propagation are crucial for interpreting neural function.

Suggested Citation

  • Francesco Randi & Anuj K. Sharma & Sophie Dvali & Andrew M. Leifer, 2023. "Neural signal propagation atlas of Caenorhabditis elegans," Nature, Nature, vol. 623(7986), pages 406-414, November.
  • Handle: RePEc:nat:nature:v:623:y:2023:i:7986:d:10.1038_s41586-023-06683-4
    DOI: 10.1038/s41586-023-06683-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06683-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06683-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Yan & Wu, Fuqiang & Wang, Qingyun, 2024. "Dynamics and stability of neural systems with indirect interactions involved energy levels," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Ichiro Aoki & Luca Golinelli & Eva Dunkel & Shripriya Bhat & Erschad Bassam & Isabel Beets & Alexander Gottschalk, 2024. "Hierarchical regulation of functionally antagonistic neuropeptides expressed in a single neuron pair," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:623:y:2023:i:7986:d:10.1038_s41586-023-06683-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.