IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v621y2023i7980d10.1038_s41586-023-06437-2.html
   My bibliography  Save this article

Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids

Author

Listed:
  • Sjors H. W. Scheres

    (Medical Research Council Laboratory of Molecular Biology)

  • Benjamin Ryskeldi-Falcon

    (Medical Research Council Laboratory of Molecular Biology)

  • Michel Goedert

    (Medical Research Council Laboratory of Molecular Biology)

Abstract

Abnormal assembly of tau, α-synuclein, TDP-43 and amyloid-β proteins into amyloid filaments defines most human neurodegenerative diseases. Genetics provides a direct link between filament formation and the causes of disease. Developments in cryo-electron microscopy (cryo-EM) have made it possible to determine the atomic structures of amyloids from postmortem human brains. Here we review the structures of brain-derived amyloid filaments that have been determined so far and discuss their impact on research into neurodegeneration. Whereas a given protein can adopt many different filament structures, specific amyloid folds define distinct diseases. Amyloid structures thus provide a description of neuropathology at the atomic level and a basis for studying disease. Future research should focus on model systems that replicate the structures observed in disease to better understand the molecular mechanisms of disease and develop improved diagnostics and therapies.

Suggested Citation

  • Sjors H. W. Scheres & Benjamin Ryskeldi-Falcon & Michel Goedert, 2023. "Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids," Nature, Nature, vol. 621(7980), pages 701-710, September.
  • Handle: RePEc:nat:nature:v:621:y:2023:i:7980:d:10.1038_s41586-023-06437-2
    DOI: 10.1038/s41586-023-06437-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06437-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06437-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binh An Nguyen & Virender Singh & Shumaila Afrin & Anna Yakubovska & Lanie Wang & Yasmin Ahmed & Rose Pedretti & Maria del Carmen Fernandez-Ramirez & Preeti Singh & Maja Pękała & Luis O. Cabrera Herna, 2024. "Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:621:y:2023:i:7980:d:10.1038_s41586-023-06437-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.