IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v621y2023i7977d10.1038_s41586-023-06384-y.html
   My bibliography  Save this article

Adsorbate motors for unidirectional translation and transport

Author

Listed:
  • Grant J. Simpson

    (University of Graz)

  • Mats Persson

    (University of Liverpool)

  • Leonhard Grill

    (University of Graz)

Abstract

Artificial molecular motors are designed to transform external energy into useful work in the form of unidirectional motion1. They have been studied mainly in solution2–4, but also on solid surfaces5,6, which provide fixed reference points, allowing for tracking of their movement. However, these molecules require sophisticated design and synthesis, because the motor function must be imprinted into the chemical structure, and show reduced functionality on surfaces compared with in solution5–8. DNA walkers9,10, on the other hand, impart high directionality as they include the surface as part of the motor function, but they require chemical surface patterning and sequential solvent modification for motor activation. Here we show how efficient motors can operate at much smaller length scales on a homogeneous metal surface without any liquid. This is realized by combining a surface with a simple molecule, which, by itself, does not contain any motor unit. The motion, which is tracked at the single-molecule level, is triggered by intramolecular proton transfer with a corresponding modulation of the potential energy surface. Each molecule moves with 100 percent unidirectionality along an atomically defined straight line. Proof of the motor performing meaningful work is shown by controlled transport of single carbon monoxide molecules. This simplistic concept could form the basis for the controlled bottom-up assembly of nanostructures at the atomic scale.

Suggested Citation

  • Grant J. Simpson & Mats Persson & Leonhard Grill, 2023. "Adsorbate motors for unidirectional translation and transport," Nature, Nature, vol. 621(7977), pages 82-86, September.
  • Handle: RePEc:nat:nature:v:621:y:2023:i:7977:d:10.1038_s41586-023-06384-y
    DOI: 10.1038/s41586-023-06384-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06384-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06384-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pieter J. Keenan & Rebecca M. Purkiss & Tillmann Klamroth & Peter A. Sloan & Kristina R. Rusimova, 2024. "Measuring competing outcomes of a single-molecule reaction reveals classical Arrhenius chemical kinetics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:621:y:2023:i:7977:d:10.1038_s41586-023-06384-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.