Visualizing interfacial collective reaction behaviour of Li–S batteries
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-023-06326-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Xiongwei Zhong & Xiao Xiao & Qizhen Li & Mengtian Zhang & Zhitong Li & Leyi Gao & Biao Chen & Zhiyang Zheng & Qingjin Fu & Xingzhu Wang & Guangmin Zhou & Baomin Xu, 2024. "Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Zhen Wu & Mingliang Liu & Wenfeng He & Tong Guo & Wei Tong & Erjun Kan & Xiaoping Ouyang & Fen Qiao & Junfeng Wang & Xueliang Sun & Xin Wang & Junwu Zhu & Ali Coskun & Yongsheng Fu, 2024. "Unveiling the autocatalytic growth of Li2S crystals at the solid-liquid interface in lithium-sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Qin Yang & Jinyan Cai & Guanwu Li & Runhua Gao & Zhiyuan Han & Jingjing Han & Dong Liu & Lixian Song & Zixiong Shi & Dong Wang & Gongming Wang & Weitao Zheng & Guangmin Zhou & Yingze Song, 2024. "Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium–sulfur reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Ji Hwan Kim & Mihyun Kim & Seong-Jun Kim & Shin-Yeong Kim & Seungho Yu & Wonchan Hwang & Eunji Kwon & Jae-Hong Lim & So Hee Kim & Yung-Eun Sung & Seung-Ho Yu, 2024. "Understanding the electrochemical processes of SeS2 positive electrodes for developing high-performance non-aqueous lithium sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:621:y:2023:i:7977:d:10.1038_s41586-023-06326-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.