IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v620y2023i7975d10.1038_s41586-023-06233-y.html
   My bibliography  Save this article

Spin–vibronic coherence drives singlet–triplet conversion

Author

Listed:
  • Shahnawaz R. Rather

    (Northwestern University)

  • Nicholas P. Weingartz

    (Northwestern University
    Argonne National Laboratory)

  • Sarah Kromer

    (North Carolina State University)

  • Felix N. Castellano

    (North Carolina State University)

  • Lin X. Chen

    (Northwestern University
    Argonne National Laboratory)

Abstract

Design-specific control over the transitions between excited electronic states with different spin multiplicities is of the utmost importance in molecular and materials chemistry1–3. Previous studies have indicated that the combination of spin–orbit and vibronic effects, collectively termed the spin–vibronic effect, can accelerate quantum-mechanically forbidden transitions at non-adiabatic crossings4,5. However, it has been difficult to identify precise experimental manifestations of the spin–vibronic mechanism. Here we present coherence spectroscopy experiments that reveal the interplay between the spin, electronic and vibrational degrees of freedom that drive efficient singlet–triplet conversion in four structurally related dinuclear Pt(II) metal–metal-to-ligand charge-transfer (MMLCT) complexes. Photoexcitation activates the formation of a Pt–Pt bond, launching a stretching vibrational wavepacket. The molecular-structure-dependent decoherence and recoherence dynamics of this wavepacket resolve the spin–vibronic mechanism. We find that vectorial motion along the Pt–Pt stretching coordinates tunes the singlet and intermediate-state energy gap irreversibly towards the conical intersection and subsequently drives formation of the lowest stable triplet state in a ratcheting fashion. This work demonstrates the viability of using vibronic coherences as probes6–9 to clarify the interplay among spin, electronic and nuclear dynamics in spin-conversion processes, and this could inspire new modular designs to tailor the properties of excited states.

Suggested Citation

  • Shahnawaz R. Rather & Nicholas P. Weingartz & Sarah Kromer & Felix N. Castellano & Lin X. Chen, 2023. "Spin–vibronic coherence drives singlet–triplet conversion," Nature, Nature, vol. 620(7975), pages 776-781, August.
  • Handle: RePEc:nat:nature:v:620:y:2023:i:7975:d:10.1038_s41586-023-06233-y
    DOI: 10.1038/s41586-023-06233-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06233-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06233-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Luo & Shaoxiang Sheng & Michele Pisarra & Alberto Martin-Jimenez & Fernando Martin & Klaus Kern & Manish Garg, 2024. "Selective excitation of vibrations in a single molecule," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:620:y:2023:i:7975:d:10.1038_s41586-023-06233-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.