Author
Listed:
- Liam J. Hughes
(The University of Sheffield)
- Mike R. Massam
(The University of Sheffield)
- Oscar Morton
(The University of Sheffield)
- Felicity A. Edwards
(The University of Sheffield
RSPB Centre for Conservation Science)
- Brett R. Scheffers
(University of Florida)
- David P. Edwards
(The University of Sheffield)
Abstract
Wildlife trade is a multibillion-dollar industry1 targeting a hyperdiversity of species2 and can contribute to major declines in abundance3. A key question is understanding the global hotspots of wildlife trade for phylogenetic (PD) and functional (FD) diversity, which underpin the conservation of evolutionary history4, ecological functions5 and ecosystem services benefiting humankind6. Using a global dataset of traded bird and mammal species, we identify that the highest levels of traded PD and FD are from tropical regions, where high numbers of evolutionary distinct and globally endangered species in trade occur. The standardized effect size (ses) of traded PD and FD also shows strong tropical epicentres, with additional hotspots of mammalian ses.PD in the eastern United States and ses.FD in Europe. Large-bodied, frugivorous and canopy-dwelling birds and large-bodied mammals are more likely to be traded whereas insectivorous birds and diurnally foraging mammals are less likely. Where trade drives localized extinctions3, our results suggest substantial losses of unique evolutionary lineages and functional traits, with possible cascading effects for communities and ecosystems5,7. Avoiding unsustainable exploitation and lost community integrity requires targeted conservation efforts, especially in hotspots of traded phylogenetic and functional diversity.
Suggested Citation
Liam J. Hughes & Mike R. Massam & Oscar Morton & Felicity A. Edwards & Brett R. Scheffers & David P. Edwards, 2023.
"Global hotspots of traded phylogenetic and functional diversity,"
Nature, Nature, vol. 620(7973), pages 351-357, August.
Handle:
RePEc:nat:nature:v:620:y:2023:i:7973:d:10.1038_s41586-023-06371-3
DOI: 10.1038/s41586-023-06371-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:620:y:2023:i:7973:d:10.1038_s41586-023-06371-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.