IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v620y2023i7973d10.1038_s41586-023-06230-1.html
   My bibliography  Save this article

A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b

Author

Listed:
  • Louis-Philippe Coulombe

    (Université de Montréal
    Université de Montréal)

  • Björn Benneke

    (Université de Montréal
    Université de Montréal)

  • Ryan Challener

    (University of Michigan)

  • Anjali A. A. Piette

    (Carnegie Institution for Science)

  • Lindsey S. Wiser

    (Arizona State University)

  • Megan Mansfield

    (University of Arizona)

  • Ryan J. MacDonald

    (University of Michigan
    Cornell University
    Cornell University)

  • Hayley Beltz

    (University of Michigan)

  • Adina D. Feinstein

    (University of Chicago)

  • Michael Radica

    (Université de Montréal
    Université de Montréal)

  • Arjun B. Savel

    (University of Maryland
    Flatiron Institute)

  • Leonardo A. Santos

    (Space Telescope Science Institute)

  • Jacob L. Bean

    (University of Chicago)

  • Vivien Parmentier

    (Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange)

  • Ian Wong

    (NASA Goddard Space Flight Center)

  • Emily Rauscher

    (University of Michigan)

  • Thaddeus D. Komacek

    (University of Maryland)

  • Eliza M.-R. Kempton

    (University of Maryland)

  • Xianyu Tan

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    University of Oxford)

  • Mark Hammond

    (University of Oxford)

  • Neil T. Lewis

    (University of Exeter)

  • Michael R. Line

    (Arizona State University)

  • Elspeth K. H. Lee

    (University of Bern)

  • Hinna Shivkumar

    (University of Amsterdam)

  • Ian J. M. Crossfield

    (University of Kansas)

  • Matthew C. Nixon

    (University of Maryland)

  • Benjamin V. Rackham

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Hannah R. Wakeford

    (University of Bristol)

  • Luis Welbanks

    (Arizona State University)

  • Xi Zhang

    (University of California, Santa Cruz)

  • Natalie M. Batalha

    (University of California, Santa Cruz)

  • Zachory K. Berta-Thompson

    (University of Colorado Boulder)

  • Quentin Changeat

    (Space Telescope Science Institute
    University College London)

  • Jean-Michel Désert

    (University of Amsterdam)

  • Néstor Espinoza

    (Space Telescope Science Institute)

  • Jayesh M. Goyal

    (National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI))

  • Joseph Harrington

    (University of Central Florida
    University of Central Florida)

  • Heather A. Knutson

    (California Institute of Technology)

  • Laura Kreidberg

    (Max Planck Institute for Astronomy)

  • Mercedes López-Morales

    (Center for Astrophysics | Harvard & Smithsonian)

  • Avi Shporer

    (Massachusetts Institute of Technology)

  • David K. Sing

    (Johns Hopkins University
    Johns Hopkins University)

  • Kevin B. Stevenson

    (Johns Hopkins Applied Physics Laboratory)

  • Keshav Aggarwal

    (Indian Institute of Technology)

  • Eva-Maria Ahrer

    (University of Warwick
    University of Warwick)

  • Munazza K. Alam

    (Carnegie Institution for Science)

  • Taylor J. Bell

    (Bay Area Environmental Research Institute, NASA Ames Research Center)

  • Jasmina Blecic

    (New York University Abu Dhabi
    New York University Abu Dhabi)

  • Claudio Caceres

    (Universidad Andrés Bello
    Núcleo Milenio de Formación Planetaria (NPF)
    Centro de Astrofisica y Tecnologias Afines (CATA))

  • Aarynn L. Carter

    (University of California, Santa Cruz)

  • Sarah L. Casewell

    (University of Leicester)

  • Nicolas Crouzet

    (University of Leiden)

  • Patricio E. Cubillos

    (INAF – Osservatorio Astrofisico di Torino
    Austrian Academy of Sciences)

  • Leen Decin

    (KU Leuven)

  • Jonathan J. Fortney

    (University of California, Santa Cruz)

  • Neale P. Gibson

    (Trinity College Dublin)

  • Kevin Heng

    (University of Warwick
    Ludwig-Maximilians-Universität München
    University of Bern)

  • Thomas Henning

    (Max Planck Institute for Astronomy)

  • Nicolas Iro

    (German Aerospace Center (DLR))

  • Sarah Kendrew

    (Space Telescope Science Institute)

  • Pierre-Olivier Lagage

    (Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM)

  • Jérémy Leconte

    (Université de Bordeaux)

  • Monika Lendl

    (Université de Genève)

  • Joshua D. Lothringer

    (Utah Valley University)

  • Luigi Mancini

    (Max Planck Institute for Astronomy
    INAF – Osservatorio Astrofisico di Torino
    University of Rome “Tor Vergata”)

  • Thomas Mikal-Evans

    (Max Planck Institute for Astronomy)

  • Karan Molaverdikhani

    (Max Planck Institute for Astronomy
    Ludwig-Maximilians-Universität München
    Exzellenzcluster Origins)

  • Nikolay K. Nikolov

    (Space Telescope Science Institute)

  • Kazumasa Ohno

    (University of California, Santa Cruz)

  • Enric Palle

    (Instituto de Astrofísica de Canarias (IAC))

  • Caroline Piaulet

    (Université de Montréal
    Université de Montréal)

  • Seth Redfield

    (Wesleyan University)

  • Pierre-Alexis Roy

    (Université de Montréal
    Université de Montréal)

  • Shang-Min Tsai

    (University of California, Riverside)

  • Olivia Venot

    (Université Paris Cité and Université Paris-Est Creteil, CNRS, LISA)

  • Peter J. Wheatley

    (University of Warwick
    University of Warwick)

Abstract

Close-in giant exoplanets with temperatures greater than 2,000 K (‘ultra-hot Jupiters’) have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1–3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3–12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13 instrument on the JWST. The data span 0.85 to 2.85 μm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σ confidence) and evidence for optical opacity, possibly attributable to H−, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance (‘metallicity’, $${\rm{M/H}}=1.0{3}_{-0.51}^{+1.11}$$ M/H = 1.0 3 − 0.51 + 1.11 times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators.

Suggested Citation

  • Louis-Philippe Coulombe & Björn Benneke & Ryan Challener & Anjali A. A. Piette & Lindsey S. Wiser & Megan Mansfield & Ryan J. MacDonald & Hayley Beltz & Adina D. Feinstein & Michael Radica & Arjun B. , 2023. "A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b," Nature, Nature, vol. 620(7973), pages 292-298, August.
  • Handle: RePEc:nat:nature:v:620:y:2023:i:7973:d:10.1038_s41586-023-06230-1
    DOI: 10.1038/s41586-023-06230-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06230-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06230-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:620:y:2023:i:7973:d:10.1038_s41586-023-06230-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.