Author
Listed:
- Isaac J. Onyett
(University of Copenhagen)
- Martin Schiller
(University of Copenhagen)
- Georgy V. Makhatadze
(University of Copenhagen)
- Zhengbin Deng
(University of Copenhagen)
- Anders Johansen
(University of Copenhagen
Lund University)
- Martin Bizzarro
(University of Copenhagen
Université de Paris Cité)
Abstract
Understanding the nature and origin of the precursor material to terrestrial planets is key to deciphering the mechanisms and timescales of planet formation1. Nucleosynthetic variability among rocky Solar System bodies can trace the composition of planetary building blocks2–5. Here we report the nucleosynthetic composition of silicon (μ30Si), the most abundant refractory planet-building element, in primitive and differentiated meteorites to identify terrestrial planet precursors. Inner Solar System differentiated bodies, including Mars, record μ30Si deficits of −11.0 ± 3.2 parts per million to −5.8 ± 3.0 parts per million whereas non-carbonaceous and carbonaceous chondrites show μ30Si excesses from 7.4 ± 4.3 parts per million to 32.8 ± 2.0 parts per million relative to Earth. This establishes that chondritic bodies are not planetary building blocks. Rather, material akin to early-formed differentiated asteroids must represent a major planetary constituent. The μ30Si values of asteroidal bodies correlate with their accretion ages, reflecting progressive admixing of a μ30Si-rich outer Solar System material to an initially μ30Si-poor inner disk. Mars’ formation before chondrite parent bodies is necessary to avoid incorporation of μ30Si-rich material. In contrast, Earth’s μ30Si composition necessitates admixing of 26 ± 9 per cent of μ30Si-rich outer Solar System material to its precursors. The μ30Si compositions of Mars and proto-Earth are consistent with their rapid formation by collisional growth and pebble accretion less than three million years after Solar System formation. Finally, Earth’s nucleosynthetic composition for s-process sensitive (molybdenum and zirconium) and siderophile (nickel) tracers are consistent with pebble accretion when volatility-driven processes during accretion and the Moon-forming impact are carefully evaluated.
Suggested Citation
Isaac J. Onyett & Martin Schiller & Georgy V. Makhatadze & Zhengbin Deng & Anders Johansen & Martin Bizzarro, 2023.
"Silicon isotope constraints on terrestrial planet accretion,"
Nature, Nature, vol. 619(7970), pages 539-544, July.
Handle:
RePEc:nat:nature:v:619:y:2023:i:7970:d:10.1038_s41586-023-06135-z
DOI: 10.1038/s41586-023-06135-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:619:y:2023:i:7970:d:10.1038_s41586-023-06135-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.