IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v618y2023i7965d10.1038_s41586-023-06096-3.html
   My bibliography  Save this article

Evidence for the utility of quantum computing before fault tolerance

Author

Listed:
  • Youngseok Kim

    (IBM Thomas J. Watson Research Center)

  • Andrew Eddins

    (IBM Research - Cambridge)

  • Sajant Anand

    (University of California, Berkeley)

  • Ken Xuan Wei

    (IBM Thomas J. Watson Research Center)

  • Ewout Berg

    (IBM Thomas J. Watson Research Center)

  • Sami Rosenblatt

    (IBM Thomas J. Watson Research Center)

  • Hasan Nayfeh

    (IBM Thomas J. Watson Research Center)

  • Yantao Wu

    (University of California, Berkeley
    RIKEN iTHEMS)

  • Michael Zaletel

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory)

  • Kristan Temme

    (IBM Thomas J. Watson Research Center)

  • Abhinav Kandala

    (IBM Thomas J. Watson Research Center)

Abstract

Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize1 and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods2,3 break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications4,5.

Suggested Citation

  • Youngseok Kim & Andrew Eddins & Sajant Anand & Ken Xuan Wei & Ewout Berg & Sami Rosenblatt & Hasan Nayfeh & Yantao Wu & Michael Zaletel & Kristan Temme & Abhinav Kandala, 2023. "Evidence for the utility of quantum computing before fault tolerance," Nature, Nature, vol. 618(7965), pages 500-505, June.
  • Handle: RePEc:nat:nature:v:618:y:2023:i:7965:d:10.1038_s41586-023-06096-3
    DOI: 10.1038/s41586-023-06096-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06096-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06096-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suhas Ganjam & Yanhao Wang & Yao Lu & Archan Banerjee & Chan U Lei & Lev Krayzman & Kim Kisslinger & Chenyu Zhou & Ruoshui Li & Yichen Jia & Mingzhao Liu & Luigi Frunzio & Robert J. Schoelkopf, 2024. "Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Spencer D. Fallek & Vikram S. Sandhu & Ryan A. McGill & John M. Gray & Holly N. Tinkey & Craig R. Clark & Kenton R. Brown, 2024. "Rapid exchange cooling with trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Ryan Snodgrass & Vincent Kotsubo & Scott Backhaus & Joel Ullom, 2024. "Dynamic acoustic optimization of pulse tube refrigerators for rapid cooldown," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:618:y:2023:i:7965:d:10.1038_s41586-023-06096-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.