IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v618y2023i7964d10.1038_s41586-023-06001-y.html
   My bibliography  Save this article

Copper-catalysed enantioconvergent alkylation of oxygen nucleophiles

Author

Listed:
  • Caiyou Chen

    (California Institute of Technology
    Wuhan University)

  • Gregory C. Fu

    (California Institute of Technology)

Abstract

Carbon–oxygen bonds are commonplace in organic molecules, including chiral bioactive compounds; therefore, the development of methods for their construction with simultaneous control of stereoselectivity is an important objective in synthesis. The Williamson ether synthesis, first reported in 18501, is the most widely used approach to the alkylation of an oxygen nucleophile, but it has significant limitations (scope and stereochemistry) owing to its reaction mechanism (SN2 pathway). Transition-metal catalysis of the coupling of an oxygen nucleophile with an alkyl electrophile has the potential to address these limitations, but progress so far has been limited2–7, especially with regard to controlling enantioselectivity. Here we establish that a readily available copper catalyst can achieve an array of enantioconvergent substitution reactions of α-haloamides, a useful family of electrophiles, by oxygen nucleophiles; the reaction proceeds under mild conditions in the presence of a wide variety of functional groups. The catalyst is uniquely effective in being able to achieve enantioconvergent alkylations of not only oxygen nucleophiles but also nitrogen nucleophiles, giving support for the potential of transition-metal catalysts to provide a solution to the pivotal challenge of achieving enantioselective alkylations of heteroatom nucleophiles.

Suggested Citation

  • Caiyou Chen & Gregory C. Fu, 2023. "Copper-catalysed enantioconvergent alkylation of oxygen nucleophiles," Nature, Nature, vol. 618(7964), pages 301-307, June.
  • Handle: RePEc:nat:nature:v:618:y:2023:i:7964:d:10.1038_s41586-023-06001-y
    DOI: 10.1038/s41586-023-06001-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06001-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06001-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangfeng Lin & Xia Mu & Hongqiang Cui & Qian Li & Zhaochi Feng & Yan Liu & Guohui Li & Can Li, 2024. "Diastereo-divergent synthesis of chiral hindered ethers via a synergistic calcium(II)/gold(I) catalyzed cascade hydration/1,4-addition reaction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:618:y:2023:i:7964:d:10.1038_s41586-023-06001-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.