Author
Listed:
- Sandro Kraemer
(KU Leuven, Instituut voor Kern- en Stralingsfysica
Ludwig-Maximilians-Universität München)
- Janni Moens
(KU Leuven, Quantum Solid State Physics)
- Michail Athanasakis-Kaklamanakis
(KU Leuven, Instituut voor Kern- en Stralingsfysica
CERN)
- Silvia Bara
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Kjeld Beeks
(TU Wien)
- Premaditya Chhetri
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Katerina Chrysalidis
(CERN)
- Arno Claessens
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Thomas E. Cocolios
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- João G. M. Correia
(Universidade de Lisboa)
- Hilde De Witte
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Rafael Ferrer
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Sarina Geldhof
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Reinhard Heinke
(CERN)
- Niyusha Hosseini
(TU Wien)
- Mark Huyse
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Ulli Köster
(Institut Laue-Langevin)
- Yuri Kudryavtsev
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Mustapha Laatiaoui
(Johannes-Gutenberg-Universität
Helmholtz-Institut Mainz
GSI Helmholtzzentrum für Scherionenforschung)
- Razvan Lica
(CERN
Horia Hulubei National Institute of Physics and Nuclear Engineering)
- Goele Magchiels
(KU Leuven, Quantum Solid State Physics)
- Vladimir Manea
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Clement Merckling
(imec)
- Lino M. C. Pereira
(KU Leuven, Quantum Solid State Physics)
- Sebastian Raeder
(Helmholtz-Institut Mainz
GSI Helmholtzzentrum für Scherionenforschung)
- Thorsten Schumm
(TU Wien)
- Simon Sels
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Peter G. Thirolf
(Ludwig-Maximilians-Universität München)
- Shandirai Malven Tunhuma
(KU Leuven, Quantum Solid State Physics)
- Paul Van Den Bergh
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Piet Van Duppen
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- André Vantomme
(KU Leuven, Quantum Solid State Physics)
- Matthias Verlinde
(KU Leuven, Instituut voor Kern- en Stralingsfysica)
- Renan Villarreal
(KU Leuven, Quantum Solid State Physics)
- Ulrich Wahl
(Universidade de Lisboa)
Abstract
The radionuclide thorium-229 features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. It constitutes one of the leading candidates for use in next-generation optical clocks1–3. This nuclear clock will be a unique tool for precise tests of fundamental physics4–9. Whereas indirect experimental evidence for the existence of such an extraordinary nuclear state is substantially older10, the proof of existence has been delivered only recently by observing the isomer’s electron conversion decay11. The isomer’s excitation energy, nuclear spin and electromagnetic moments, the electron conversion lifetime and a refined energy of the isomer have been measured12–16. In spite of recent progress, the isomer’s radiative decay, a key ingredient for the development of a nuclear clock, remained unobserved. Here, we report the detection of the radiative decay of this low-energy isomer in thorium-229 (229mTh). By performing vacuum-ultraviolet spectroscopy of 229mTh incorporated into large-bandgap CaF2 and MgF2 crystals at the ISOLDE facility at CERN, photons of 8.338(24) eV are measured, in agreement with recent measurements14–16 and the uncertainty is decreased by a factor of seven. The half-life of 229mTh embedded in MgF2 is determined to be 670(102) s. The observation of the radiative decay in a large-bandgap crystal has important consequences for the design of a future nuclear clock and the improved uncertainty of the energy eases the search for direct laser excitation of the atomic nucleus.
Suggested Citation
Sandro Kraemer & Janni Moens & Michail Athanasakis-Kaklamanakis & Silvia Bara & Kjeld Beeks & Premaditya Chhetri & Katerina Chrysalidis & Arno Claessens & Thomas E. Cocolios & João G. M. Correia & Hil, 2023.
"Observation of the radiative decay of the 229Th nuclear clock isomer,"
Nature, Nature, vol. 617(7962), pages 706-710, May.
Handle:
RePEc:nat:nature:v:617:y:2023:i:7962:d:10.1038_s41586-023-05894-z
DOI: 10.1038/s41586-023-05894-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:617:y:2023:i:7962:d:10.1038_s41586-023-05894-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.