Author
Listed:
- Joselyn S. Soto
(University of California)
- Yasaman Jami-Alahmadi
(University of California)
- Jakelyn Chacon
(University of California)
- Stefanie L. Moye
(University of California)
- Blanca Diaz-Castro
(University of California
University of Edinburgh)
- James A. Wohlschlegel
(University of California)
- Baljit S. Khakh
(University of California
University of California)
Abstract
Astrocytes and neurons extensively interact in the brain. Identifying astrocyte and neuron proteomes is essential for elucidating the protein networks that dictate their respective contributions to physiology and disease. Here we used cell-specific and subcompartment-specific proximity-dependent biotinylation1 to study the proteomes of striatal astrocytes and neurons in vivo. We evaluated cytosolic and plasma membrane compartments for astrocytes and neurons to discover how these cells differ at the protein level in their signalling machinery. We also assessed subcellular compartments of astrocytes, including end feet and fine processes, to reveal their subproteomes and the molecular basis of essential astrocyte signalling and homeostatic functions. Notably, SAPAP3 (encoded by Dlgap3), which is associated with obsessive–compulsive disorder (OCD) and repetitive behaviours2–8, was detected at high levels in striatal astrocytes and was enriched within specific astrocyte subcompartments where it regulated actin cytoskeleton organization. Furthermore, genetic rescue experiments combined with behavioural analyses and molecular assessments in a mouse model of OCD4 lacking SAPAP3 revealed distinct contributions of astrocytic and neuronal SAPAP3 to repetitive and anxiety-related OCD-like phenotypes. Our data define how astrocytes and neurons differ at the protein level and in their major signalling pathways. Moreover, they reveal how astrocyte subproteomes vary between physiological subcompartments and how both astrocyte and neuronal SAPAP3 mechanisms contribute to OCD phenotypes in mice. Our data indicate that therapeutic strategies that target both astrocytes and neurons may be useful to explore in OCD and potentially other brain disorders.
Suggested Citation
Joselyn S. Soto & Yasaman Jami-Alahmadi & Jakelyn Chacon & Stefanie L. Moye & Blanca Diaz-Castro & James A. Wohlschlegel & Baljit S. Khakh, 2023.
"Astrocyte–neuron subproteomes and obsessive–compulsive disorder mechanisms,"
Nature, Nature, vol. 616(7958), pages 764-773, April.
Handle:
RePEc:nat:nature:v:616:y:2023:i:7958:d:10.1038_s41586-023-05927-7
DOI: 10.1038/s41586-023-05927-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:616:y:2023:i:7958:d:10.1038_s41586-023-05927-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.