Author
Abstract
In 2017, 1I/‘Oumuamua was identified as the first known interstellar object in the Solar System1. Although typical cometary activity tracers were not detected2–6, ‘Oumuamua showed a notable non-gravitational acceleration7. So far, there has been no explanation that can reconcile these constraints8. Owing to energetic considerations, outgassing of hyper-volatile molecules is favoured over heavier volatiles such as H2O and CO2 (ref. 9). However, there are theoretical and/or observational inconsistencies10 with existing models invoking the sublimation of pure H2 (ref. 9), N2 (ref. 11) and CO (ref. 12). Non-outgassing explanations require fine-tuned formation mechanisms and/or unrealistic progenitor production rates7,13–15. Here we report that the acceleration of ‘Oumuamua is due to the release of entrapped molecular hydrogen that formed through energetic processing of an H2O-rich icy body. In this model, ‘Oumuamua began as an icy planetesimal that was irradiated at low temperatures by cosmic rays during its interstellar journey, and experienced warming during its passage through the Solar System. This explanation is supported by a large body of experimental work showing that H2 is efficiently and generically produced from H2O ice processing, and that the entrapped H2 is released over a broad range of temperatures during annealing of the amorphous water matrix16–22. We show that this mechanism can explain many of ‘Oumuamua’s peculiar properties without fine-tuning. This provides further support3 that ‘Oumuamua originated as a planetesimal relic broadly similar to Solar System comets.
Suggested Citation
Jennifer B. Bergner & Darryl Z. Seligman, 2023.
"Acceleration of 1I/‘Oumuamua from radiolytically produced H2 in H2O ice,"
Nature, Nature, vol. 615(7953), pages 610-613, March.
Handle:
RePEc:nat:nature:v:615:y:2023:i:7953:d:10.1038_s41586-022-05687-w
DOI: 10.1038/s41586-022-05687-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:615:y:2023:i:7953:d:10.1038_s41586-022-05687-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.