Author
Abstract
The ancient stable continents are up to 250 km deep, with roots extending into the diamond stability field1. These cratons owe their mechanical strength to being cool and rigid2, features inherited from extensive melt extraction1,3. The most prominent model for craton formation anticipates dominant melting at relatively shallow depth (50–100 km) above diamond stability4–7, followed by later imbrication to form the deeper roots8,9. Here we present results from thermodynamic and geochemical modelling of melting at sufficiently high temperatures to produce the very magnesian olivine of cratonic roots10. The new closed-system and open-system modelling reproduces the observed cratonic mantle mineral compositions by deep (about 200 km) and very hot melting (≥1,800 °C), obviating the need for shallow melting and stacking. The modelled highly magnesian liquids (komatiites) evolve to Al-enriched and Ti-depleted forms, as observed in the greenstone belts at the fossil surface of cratons11. The paucity of Ti-depleted komatiite12 implies that advanced closed-system isochemical melting (>1,825 °C) was much less common than open-system interaction between deeper liquids and melting of existing refractory mantle. The highly refractory compositions of diamond inclusion minerals could imply preferential diamond growth in the more reducing parts of the cratonic root, depleted by ultra-hot melting in response to heat plumes from a deeper former boundary layer that vanished at the end of the Archaean13.
Suggested Citation
Carl Walsh & Balz S. Kamber & Emma L. Tomlinson, 2023.
"Deep, ultra-hot-melting residues as cradles of mantle diamond,"
Nature, Nature, vol. 615(7952), pages 450-454, March.
Handle:
RePEc:nat:nature:v:615:y:2023:i:7952:d:10.1038_s41586-022-05665-2
DOI: 10.1038/s41586-022-05665-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:615:y:2023:i:7952:d:10.1038_s41586-022-05665-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.