IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v615y2023i7951d10.1038_s41586-023-05742-0.html
   My bibliography  Save this article

RETRACTED ARTICLE: Evidence of near-ambient superconductivity in a N-doped lutetium hydride

Author

Listed:
  • Nathan Dasenbrock-Gammon

    (University of Rochester)

  • Elliot Snider

    (University of Rochester)

  • Raymond McBride

    (University of Rochester)

  • Hiranya Pasan

    (University of Rochester)

  • Dylan Durkee

    (University of Rochester)

  • Nugzari Khalvashi-Sutter

    (University of Rochester)

  • Sasanka Munasinghe

    (University of Rochester)

  • Sachith E. Dissanayake

    (University of Rochester)

  • Keith V. Lawler

    (Unearthly Materials Inc.)

  • Ashkan Salamat

    (Unearthly Materials Inc.)

  • Ranga P. Dias

    (University of Rochester
    University of Rochester)

Abstract

The absence of electrical resistance exhibited by superconducting materials would have enormous potential for applications if it existed at ambient temperature and pressure conditions. Despite decades of intense research efforts, such a state has yet to be realized1,2. At ambient pressures, cuprates are the material class exhibiting superconductivity to the highest critical superconducting transition temperatures (Tc), up to about 133 K (refs. 3–5). Over the past decade, high-pressure ‘chemical precompression’6,7 of hydrogen-dominant alloys has led the search for high-temperature superconductivity, with demonstrated Tc approaching the freezing point of water in binary hydrides at megabar pressures8–13. Ternary hydrogen-rich compounds, such as carbonaceous sulfur hydride, offer an even larger chemical space to potentially improve the properties of superconducting hydrides14–21. Here we report evidence of superconductivity on a nitrogen-doped lutetium hydride with a maximum Tc of 294 K at 10 kbar, that is, superconductivity at room temperature and near-ambient pressures. The compound was synthesized under high-pressure high-temperature conditions and then—after full recoverability—its material and superconducting properties were examined along compression pathways. These include temperature-dependent resistance with and without an applied magnetic field, the magnetization (M) versus magnetic field (H) curve, a.c. and d.c. magnetic susceptibility, as well as heat-capacity measurements. X-ray diffraction (XRD), energy-dispersive X-ray (EDX) and theoretical simulations provide some insight into the stoichiometry of the synthesized material. Nevertheless, further experiments and simulations are needed to determine the exact stoichiometry of hydrogen and nitrogen, and their respective atomistic positions, in a greater effort to further understand the superconducting state of the material.

Suggested Citation

  • Nathan Dasenbrock-Gammon & Elliot Snider & Raymond McBride & Hiranya Pasan & Dylan Durkee & Nugzari Khalvashi-Sutter & Sasanka Munasinghe & Sachith E. Dissanayake & Keith V. Lawler & Ashkan Salamat & , 2023. "RETRACTED ARTICLE: Evidence of near-ambient superconductivity in a N-doped lutetium hydride," Nature, Nature, vol. 615(7951), pages 244-250, March.
  • Handle: RePEc:nat:nature:v:615:y:2023:i:7951:d:10.1038_s41586-023-05742-0
    DOI: 10.1038/s41586-023-05742-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-05742-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-05742-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro P. Ferreira & Lewis J. Conway & Alessio Cucciari & Simone Cataldo & Federico Giannessi & Eva Kogler & Luiz T. F. Eleno & Chris J. Pickard & Christoph Heil & Lilia Boeri, 2023. "Search for ambient superconductivity in the Lu-N-H system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xiangzhuo Xing & Chao Wang & Linchao Yu & Jie Xu & Chutong Zhang & Mengge Zhang & Song Huang & Xiaoran Zhang & Yunxian Liu & Bingchao Yang & Xin Chen & Yongsheng Zhang & Jiangang Guo & Zhixiang Shi & , 2023. "Observation of non-superconducting phase changes in nitrogen doped lutetium hydrides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:615:y:2023:i:7951:d:10.1038_s41586-023-05742-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.