Author
Listed:
- Eva-Maria Ahrer
(University of Warwick
University of Warwick)
- Kevin B. Stevenson
(Johns Hopkins APL)
- Megan Mansfield
(University of Arizona)
- Sarah E. Moran
(University of Arizona)
- Jonathan Brande
(University of Kansas)
- Giuseppe Morello
(Instituto de Astrofísica de Canarias (IAC)
Universidad de La Laguna (ULL)
Piazza del Parlamento)
- Catriona A. Murray
(University of Colorado)
- Nikolay K. Nikolov
(Space Telescope Science Institute)
- Dominique J. M. Petit dit de la Roche
(Université de Genève)
- Everett Schlawin
(University of Arizona)
- Peter J. Wheatley
(University of Warwick
University of Warwick)
- Sebastian Zieba
(Max Planck Institute for Astronomy
University of Leiden)
- Natasha E. Batalha
(NASA Ames Research Center)
- Mario Damiano
(Jet Propulsion Laboratory)
- Jayesh M. Goyal
(National Institute of Science Education and Research (NISER), HBNI)
- Monika Lendl
(Université de Genève)
- Joshua D. Lothringer
(Utah Valley University)
- Sagnick Mukherjee
(University of California, Santa Cruz)
- Kazumasa Ohno
(University of California, Santa Cruz)
- Natalie M. Batalha
(University of California, Santa Cruz
University of California, Santa Cruz)
- Matthew P. Battley
(University of Warwick
University of Warwick)
- Jacob L. Bean
(University of Chicago)
- Thomas G. Beatty
(University of Wisconsin-Madison)
- Björn Benneke
(Université de Montréal)
- Zachory K. Berta-Thompson
(University of Colorado)
- Aarynn L. Carter
(University of California, Santa Cruz)
- Patricio E. Cubillos
(Austrian Academy of Sciences
INAF – Osservatorio Astrofisico di Torino)
- Tansu Daylan
(Princeton University)
- Néstor Espinoza
(Space Telescope Science Institute
Johns Hopkins University)
- Peter Gao
(Carnegie Institution for Science)
- Neale P. Gibson
(Trinity College Dublin)
- Samuel Gill
(University of Warwick)
- Joseph Harrington
(University of Central Florida)
- Renyu Hu
(California Institute of Technology
California Institute of Technology)
- Laura Kreidberg
(Max Planck Institute for Astronomy)
- Nikole K. Lewis
(Cornell University)
- Michael R. Line
(Arizona State University)
- Mercedes López-Morales
(Center for Astrophysics | Harvard & Smithsonian)
- Vivien Parmentier
(University of Oxford
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange)
- Diana K. Powell
(Center for Astrophysics | Harvard & Smithsonian)
- David K. Sing
(Johns Hopkins University
Johns Hopkins University)
- Shang-Min Tsai
(University of Oxford)
- Hannah R. Wakeford
(University of Bristol)
- Luis Welbanks
(Arizona State University)
- Munazza K. Alam
(Carnegie Institution for Science)
- Lili Alderson
(University of Bristol)
- Natalie H. Allen
(Johns Hopkins University)
- David R. Anderson
(University of Warwick
University of Warwick)
- Joanna K. Barstow
(The Open University)
- Daniel Bayliss
(University of Warwick)
- Taylor J. Bell
(NASA Ames Research Center)
- Jasmina Blecic
(New York University Abu Dhabi
New York University Abu Dhabi)
- Edward M. Bryant
(University College London)
- Matthew R. Burleigh
(University of Leicester)
- Ludmila Carone
(Austrian Academy of Sciences)
- S. L. Casewell
(University of Leicester)
- Quentin Changeat
(Space Telescope Science Institute
Space Telescope Science Institute
University College London)
- Katy L. Chubb
(University of St Andrews)
- Ian J. M. Crossfield
(University of Kansas)
- Nicolas Crouzet
(Leiden University)
- Leen Decin
(KU Leuven)
- Jean-Michel Désert
(University of Amsterdam)
- Adina D. Feinstein
(University of Chicago)
- Laura Flagg
(Cornell University)
- Jonathan J. Fortney
(University of California, Santa Cruz)
- John E. Gizis
(University of Delaware)
- Kevin Heng
(University of Warwick
University Observatory Munich, Ludwig Maximilian University
University of Bern)
- Nicolas Iro
(University of Vienna)
- Eliza M.-R. Kempton
(University of Maryland)
- Sarah Kendrew
(Space Telescope Science Institute)
- James Kirk
(Center for Astrophysics | Harvard & Smithsonian
Imperial College London)
- Heather A. Knutson
(California Institute of Technology)
- Thaddeus D. Komacek
(University of Maryland)
- Pierre-Olivier Lagage
(Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM)
- Jérémy Leconte
(Université de Bordeaux)
- Jacob Lustig-Yaeger
(Johns Hopkins APL)
- Ryan J. MacDonald
(Cornell University
University of Michigan)
- Luigi Mancini
(Max Planck Institute for Astronomy
University of Rome “Tor Vergata”
INAF - Turin Astrophysical Observatory)
- E. M. May
(Johns Hopkins APL)
- N. J. Mayne
(University of Exeter)
- Yamila Miguel
(University of Leiden
SRON Netherlands Institute for Space Research)
- Thomas Mikal-Evans
(Max Planck Institute for Astronomy)
- Karan Molaverdikhani
(Max Planck Institute for Astronomy
University Observatory Munich, Ludwig Maximilian University
Exzellenzcluster Origins)
- Enric Palle
(Instituto de Astrofísica de Canarias (IAC))
- Caroline Piaulet
(Université de Montréal)
- Benjamin V. Rackham
(Massachusetts Institute of Technology
Massachusetts Institute of Technology)
- Seth Redfield
(Wesleyan University)
- Laura K. Rogers
(University of Cambridge)
- Pierre-Alexis Roy
(Université de Montréal)
- Zafar Rustamkulov
(Johns Hopkins University)
- Evgenya L. Shkolnik
(Arizona State University)
- Kristin S. Sotzen
(Johns Hopkins APL
Johns Hopkins University)
- Jake Taylor
(Université de Montréal
University of Oxford)
- P. Tremblin
(Université Paris-Saclay)
- Gregory S. Tucker
(Brown University)
- Jake D. Turner
(Cornell University)
- Miguel Val-Borro
(Planetary Science Institute)
- Olivia Venot
(Université de Paris Cité and Univ Paris Est Creteil, CNRS, LISA)
- Xi Zhang
(University of California, Santa Cruz)
Abstract
Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs. 1,2) provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST’s Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0–4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet’s spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1–100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs. 3,4,) or disequilibrium processes in the upper atmosphere (for example, refs. 5,6).
Suggested Citation
Eva-Maria Ahrer & Kevin B. Stevenson & Megan Mansfield & Sarah E. Moran & Jonathan Brande & Giuseppe Morello & Catriona A. Murray & Nikolay K. Nikolov & Dominique J. M. Petit dit de la Roche & Everett, 2023.
"Early Release Science of the exoplanet WASP-39b with JWST NIRCam,"
Nature, Nature, vol. 614(7949), pages 653-658, February.
Handle:
RePEc:nat:nature:v:614:y:2023:i:7949:d:10.1038_s41586-022-05590-4
DOI: 10.1038/s41586-022-05590-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:614:y:2023:i:7949:d:10.1038_s41586-022-05590-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.