IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v612y2022i7941d10.1038_s41586-022-05355-z.html
   My bibliography  Save this article

Global hotspots of salt marsh change and carbon emissions

Author

Listed:
  • Anthony D. Campbell

    (National Aeronautics and Space Administration (NASA) Goddard Space Flight Center
    Oak Ridge Associated Universities
    University of Maryland, Baltimore County)

  • Lola Fatoyinbo

    (National Aeronautics and Space Administration (NASA) Goddard Space Flight Center)

  • Liza Goldberg

    (National Aeronautics and Space Administration (NASA) Goddard Space Flight Center
    University of Maryland)

  • David Lagomasino

    (East Carolina University)

Abstract

Salt marshes provide ecosystem services such as carbon sequestration1, coastal protection2, sea-level-rise (SLR) adaptation3 and recreation4. SLR5, storm events6, drainage7 and mangrove encroachment8 are known drivers of salt marsh loss. However, the global magnitude and location of changes in salt marsh extent remains uncertain. Here we conduct a global and systematic change analysis of Landsat satellite imagery from the years 2000–2019 to quantify the loss, gain and recovery of salt marsh ecosystems and then estimate the impact of these changes on blue carbon stocks. We show a net salt marsh loss globally, equivalent to an area double the size of Singapore (719 km2), with a loss rate of 0.28% year−1 from 2000 to 2019. Net global losses resulted in 16.3 (0.4–33.2, 90% confidence interval) Tg CO2e year−1 emissions from 2000 to 2019 and a 0.045 (−0.14–0.115) Tg CO2e year−1 reduction of carbon burial. Russia and the USA accounted for 64% of salt marsh losses, driven by hurricanes and coastal erosion. Our findings highlight the vulnerability of salt marsh systems to climatic changes such as SLR and intensification of storms and cyclones.

Suggested Citation

  • Anthony D. Campbell & Lola Fatoyinbo & Liza Goldberg & David Lagomasino, 2022. "Global hotspots of salt marsh change and carbon emissions," Nature, Nature, vol. 612(7941), pages 701-706, December.
  • Handle: RePEc:nat:nature:v:612:y:2022:i:7941:d:10.1038_s41586-022-05355-z
    DOI: 10.1038/s41586-022-05355-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05355-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05355-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roa, Diana & Navrud, Ståle & Rosendahl, Knut Einar, 2023. "Accounting for unintended ecological effects of our electric future: Optimizing lithium mining and biodiversity preservation in the Chilean High-Andean wetlands," Resource and Energy Economics, Elsevier, vol. 75(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:612:y:2022:i:7941:d:10.1038_s41586-022-05355-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.