IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v612y2022i7939d10.1038_s41586-022-05483-6.html
   My bibliography  Save this article

Filopodia are a structural substrate for silent synapses in adult neocortex

Author

Listed:
  • Dimitra Vardalaki

    (MIT
    MIT)

  • Kwanghun Chung

    (MIT
    MIT
    MIT
    MIT)

  • Mark T. Harnett

    (MIT
    MIT)

Abstract

Newly generated excitatory synapses in the mammalian cortex lack sufficient AMPA-type glutamate receptors to mediate neurotransmission, resulting in functionally silent synapses that require activity-dependent plasticity to mature. Silent synapses are abundant in early development, during which they mediate circuit formation and refinement, but they are thought to be scarce in adulthood1. However, adults retain a capacity for neural plasticity and flexible learning that suggests that the formation of new connections is still prevalent. Here we used super-resolution protein imaging to visualize synaptic proteins at 2,234 synapses from layer 5 pyramidal neurons in the primary visual cortex of adult mice. Unexpectedly, about 25% of these synapses lack AMPA receptors. These putative silent synapses were located at the tips of thin dendritic protrusions, known as filopodia, which were more abundant by an order of magnitude than previously believed (comprising about 30% of all dendritic protrusions). Physiological experiments revealed that filopodia do indeed lack AMPA-receptor-mediated transmission, but they exhibit NMDA-receptor-mediated synaptic transmission. We further showed that functionally silent synapses on filopodia can be unsilenced through Hebbian plasticity, recruiting new active connections into a neuron’s input matrix. These results challenge the model that functional connectivity is largely fixed in the adult cortex and demonstrate a new mechanism for flexible control of synaptic wiring that expands the learning capabilities of the mature brain.

Suggested Citation

  • Dimitra Vardalaki & Kwanghun Chung & Mark T. Harnett, 2022. "Filopodia are a structural substrate for silent synapses in adult neocortex," Nature, Nature, vol. 612(7939), pages 323-327, December.
  • Handle: RePEc:nat:nature:v:612:y:2022:i:7939:d:10.1038_s41586-022-05483-6
    DOI: 10.1038/s41586-022-05483-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05483-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05483-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deepanjali Dwivedi & Dimitri Dumontier & Mia Sherer & Sherry Lin & Andrea M. C. Mirow & Yanjie Qiu & Qing Xu & Samuel A. Liebman & Djeckby Joseph & Sandeep R. Datta & Gord Fishell & Gabrielle Pouchelo, 2024. "Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:612:y:2022:i:7939:d:10.1038_s41586-022-05483-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.