IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v612y2022i7939d10.1038_s41586-022-05348-y.html
   My bibliography  Save this article

Formation of robust bound states of interacting microwave photons

Author

Listed:
  • A. Morvan

    (Google Research)

  • T. I. Andersen

    (Google Research)

  • X. Mi

    (Google Research)

  • C. Neill

    (Google Research)

  • A. Petukhov

    (Google Research)

  • K. Kechedzhi

    (Google Research)

  • D. A. Abanin

    (Google Research
    University of Geneva)

  • A. Michailidis

    (University of Geneva)

  • R. Acharya

    (Google Research)

  • F. Arute

    (Google Research)

  • K. Arya

    (Google Research)

  • A. Asfaw

    (Google Research)

  • J. Atalaya

    (Google Research)

  • J. C. Bardin

    (Google Research
    University of Massachusetts)

  • J. Basso

    (Google Research)

  • A. Bengtsson

    (Google Research)

  • G. Bortoli

    (Google Research)

  • A. Bourassa

    (Google Research)

  • J. Bovaird

    (Google Research)

  • L. Brill

    (Google Research)

  • M. Broughton

    (Google Research)

  • B. B. Buckley

    (Google Research)

  • D. A. Buell

    (Google Research)

  • T. Burger

    (Google Research)

  • B. Burkett

    (Google Research)

  • N. Bushnell

    (Google Research)

  • Z. Chen

    (Google Research)

  • B. Chiaro

    (Google Research)

  • R. Collins

    (Google Research)

  • P. Conner

    (Google Research)

  • W. Courtney

    (Google Research)

  • A. L. Crook

    (Google Research)

  • B. Curtin

    (Google Research)

  • D. M. Debroy

    (Google Research)

  • A. Del Toro Barba

    (Google Research)

  • S. Demura

    (Google Research)

  • A. Dunsworth

    (Google Research)

  • D. Eppens

    (Google Research)

  • C. Erickson

    (Google Research)

  • L. Faoro

    (Google Research)

  • E. Farhi

    (Google Research)

  • R. Fatemi

    (Google Research)

  • L. Flores Burgos

    (Google Research)

  • E. Forati

    (Google Research)

  • A. G. Fowler

    (Google Research)

  • B. Foxen

    (Google Research)

  • W. Giang

    (Google Research)

  • C. Gidney

    (Google Research)

  • D. Gilboa

    (Google Research)

  • M. Giustina

    (Google Research)

  • A. Grajales Dau

    (Google Research)

  • J. A. Gross

    (Google Research)

  • S. Habegger

    (Google Research)

  • M. C. Hamilton

    (Google Research)

  • M. P. Harrigan

    (Google Research)

  • S. D. Harrington

    (Google Research)

  • M. Hoffmann

    (Google Research)

  • S. Hong

    (Google Research)

  • T. Huang

    (Google Research)

  • A. Huff

    (Google Research)

  • W. J. Huggins

    (Google Research)

  • S. V. Isakov

    (Google Research)

  • J. Iveland

    (Google Research)

  • E. Jeffrey

    (Google Research)

  • Z. Jiang

    (Google Research)

  • C. Jones

    (Google Research)

  • P. Juhas

    (Google Research)

  • D. Kafri

    (Google Research)

  • T. Khattar

    (Google Research)

  • M. Khezri

    (Google Research)

  • M. Kieferová

    (Google Research
    University of Technology Sydney)

  • S. Kim

    (Google Research)

  • A. Y. Kitaev

    (Google Research
    Institute for Quantum Information and Matter, California Institute of Technology)

  • P. V. Klimov

    (Google Research)

  • A. R. Klots

    (Google Research)

  • A. N. Korotkov

    (Google Research
    University of California)

  • F. Kostritsa

    (Google Research)

  • J. M. Kreikebaum

    (Google Research)

  • D. Landhuis

    (Google Research)

  • P. Laptev

    (Google Research)

  • K.-M. Lau

    (Google Research)

  • L. Laws

    (Google Research)

  • J. Lee

    (Google Research)

  • K. W. Lee

    (Google Research)

  • B. J. Lester

    (Google Research)

  • A. T. Lill

    (Google Research)

  • W. Liu

    (Google Research)

  • A. Locharla

    (Google Research)

  • F. Malone

    (Google Research)

  • O. Martin

    (Google Research)

  • J. R. McClean

    (Google Research)

  • M. McEwen

    (Google Research
    University of California)

  • B. Meurer Costa

    (Google Research)

  • K. C. Miao

    (Google Research)

  • M. Mohseni

    (Google Research)

  • S. Montazeri

    (Google Research)

  • E. Mount

    (Google Research)

  • W. Mruczkiewicz

    (Google Research)

  • O. Naaman

    (Google Research)

  • M. Neeley

    (Google Research)

  • A. Nersisyan

    (Google Research)

  • M. Newman

    (Google Research)

  • A. Nguyen

    (Google Research)

  • M. Nguyen

    (Google Research)

  • M. Y. Niu

    (Google Research)

  • T. E. O’Brien

    (Google Research)

  • R. Olenewa

    (Google Research)

  • A. Opremcak

    (Google Research)

  • R. Potter

    (Google Research)

  • C. Quintana

    (Google Research)

  • N. C. Rubin

    (Google Research)

  • N. Saei

    (Google Research)

  • D. Sank

    (Google Research)

  • K. Sankaragomathi

    (Google Research)

  • K. J. Satzinger

    (Google Research)

  • H. F. Schurkus

    (Google Research)

  • C. Schuster

    (Google Research)

  • M. J. Shearn

    (Google Research)

  • A. Shorter

    (Google Research)

  • V. Shvarts

    (Google Research)

  • J. Skruzny

    (Google Research)

  • W. C. Smith

    (Google Research)

  • D. Strain

    (Google Research)

  • G. Sterling

    (Google Research)

  • Y. Su

    (Google Research)

  • M. Szalay

    (Google Research)

  • A. Torres

    (Google Research)

  • G. Vidal

    (Google Research)

  • B. Villalonga

    (Google Research)

  • C. Vollgraff-Heidweiller

    (Google Research)

  • T. White

    (Google Research)

  • C. Xing

    (Google Research)

  • Z. Yao

    (Google Research)

  • P. Yeh

    (Google Research)

  • J. Yoo

    (Google Research)

  • A. Zalcman

    (Google Research)

  • Y. Zhang

    (Google Research)

  • N. Zhu

    (Google Research)

  • H. Neven

    (Google Research)

  • D. Bacon

    (Google Research)

  • J. Hilton

    (Google Research)

  • E. Lucero

    (Google Research)

  • R. Babbush

    (Google Research)

  • S. Boixo

    (Google Research)

  • A. Megrant

    (Google Research)

  • J. Kelly

    (Google Research)

  • Y. Chen

    (Google Research)

  • V. Smelyanskiy

    (Google Research)

  • I. Aleiner

    (Google Research)

  • L. B. Ioffe

    (Google Research)

  • P. Roushan

    (Google Research)

Abstract

Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles1. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multiparticle bound states2–9. Here we develop a high-fidelity parameterizable fSim gate and implement the periodic quantum circuit of the spin-½ XXZ model in a ring of 24 superconducting qubits. We study the propagation of these excitations and observe their bound nature for up to five photons. We devise a phase-sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the idea that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.

Suggested Citation

  • A. Morvan & T. I. Andersen & X. Mi & C. Neill & A. Petukhov & K. Kechedzhi & D. A. Abanin & A. Michailidis & R. Acharya & F. Arute & K. Arya & A. Asfaw & J. Atalaya & J. C. Bardin & J. Basso & A. Beng, 2022. "Formation of robust bound states of interacting microwave photons," Nature, Nature, vol. 612(7939), pages 240-245, December.
  • Handle: RePEc:nat:nature:v:612:y:2022:i:7939:d:10.1038_s41586-022-05348-y
    DOI: 10.1038/s41586-022-05348-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05348-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05348-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoyu Qin & Shaohu Chen & Weixuan Zhang & Huizhen Zhang & Ruhao Pan & Junjie Li & Lei Shi & Jian Zi & Xiangdong Zhang, 2024. "Optical moiré bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:612:y:2022:i:7939:d:10.1038_s41586-022-05348-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.