IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v612y2022i7938d10.1038_s41586-022-05305-9.html
   My bibliography  Save this article

A tape-reading molecular ratchet

Author

Listed:
  • Yansong Ren

    (University of Manchester)

  • Romain Jamagne

    (University of Manchester)

  • Daniel J. Tetlow

    (University of Manchester)

  • David A. Leigh

    (University of Manchester
    East China Normal University)

Abstract

Cells process information in a manner reminiscent of a Turing machine1, autonomously reading data from molecular tapes and translating it into outputs2,3. Randomly processive macrocyclic catalysts that can derivatise threaded polymers have been described4,5, as have rotaxanes that transfer building blocks in sequence from a molecular strand to a growing oligomer6–10. However, synthetic small-molecule machines that can read and/or write information stored on artificial molecular tapes remain elusive11–13. Here we report on a molecular ratchet in which a crown ether (the ‘reading head’) is pumped from solution onto an encoded molecular strand (the ‘tape’) by a pulse14,15 of chemical fuel16. Further fuel pulses transport the macrocycle through a series of compartments of the tape via an energy ratchet14,17–22 mechanism, before releasing it back to bulk off the other end of the strand. During its directional transport, the crown ether changes conformation according to the stereochemistry of binding sites along the way. This allows the sequence of stereochemical information programmed into the tape to be read out as a string of digits in a non-destructive manner through a changing circular dichroism response. The concept is exemplified by the reading of molecular tapes with strings of balanced ternary digits (‘trits’23), −1,0,+1 and −1,0,−1. The small-molecule ratchet is a finite-state automaton: a special case24 of a Turing machine that moves in one direction through a string-encoded state sequence, giving outputs dependent on the occupied machine state25,26. It opens the way for the reading—and ultimately writing—of information using the powered directional movement of artificial nanomachines along molecular tapes.

Suggested Citation

  • Yansong Ren & Romain Jamagne & Daniel J. Tetlow & David A. Leigh, 2022. "A tape-reading molecular ratchet," Nature, Nature, vol. 612(7938), pages 78-82, December.
  • Handle: RePEc:nat:nature:v:612:y:2022:i:7938:d:10.1038_s41586-022-05305-9
    DOI: 10.1038/s41586-022-05305-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05305-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05305-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:612:y:2022:i:7938:d:10.1038_s41586-022-05305-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.