IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v611y2022i7936d10.1038_s41586-022-05391-9.html
   My bibliography  Save this article

Small rainfall changes drive substantial changes in plant coexistence

Author

Listed:
  • Mary N. Van Dyke

    (University of California, Los Angeles)

  • Jonathan M. Levine

    (Princeton University)

  • Nathan J. B. Kraft

    (University of California, Los Angeles)

Abstract

Although precipitation patterns have long been known to shape plant distributions1, the effect of changing climate on the interactions of species and therefore community composition is far less understood2,3. Here, we explored how changes in precipitation alter competitive dynamics via direct effects on individual species, as well as by the changing strength of competitive interactions between species, using an annual grassland community in California. We grew plants under ambient and reduced precipitation in the field to parameterize a competition model4 with which we quantified the stabilizing niche and fitness differences that determine species coexistence in each rainfall regime. We show that reduced precipitation had little direct effect on species grown alone, but it qualitatively shifted predicted competitive outcomes for 10 of 15 species pairs. In addition, species pairs that were functionally more similar were less likely to experience altered outcomes, indicating that functionally diverse communities may be most threatened by changing interactions. Our results highlight how important it is to account for changes to species interactions when predicting species and community response to global change.

Suggested Citation

  • Mary N. Van Dyke & Jonathan M. Levine & Nathan J. B. Kraft, 2022. "Small rainfall changes drive substantial changes in plant coexistence," Nature, Nature, vol. 611(7936), pages 507-511, November.
  • Handle: RePEc:nat:nature:v:611:y:2022:i:7936:d:10.1038_s41586-022-05391-9
    DOI: 10.1038/s41586-022-05391-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05391-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05391-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:611:y:2022:i:7936:d:10.1038_s41586-022-05391-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.