IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v611y2022i7934d10.1038_s41586-022-05328-2.html
   My bibliography  Save this article

Behavioural and dopaminergic signatures of resilience

Author

Listed:
  • Lindsay Willmore

    (Princeton University)

  • Courtney Cameron

    (Princeton University)

  • John Yang

    (Princeton University)

  • Ilana B. Witten

    (Princeton University
    Princeton University)

  • Annegret L. Falkner

    (Princeton University)

Abstract

Chronic stress can have lasting adverse consequences in some individuals, yet others are resilient to the same stressor1,2. Susceptible and resilient individuals exhibit differences in the intrinsic properties of mesolimbic dopamine (DA) neurons after the stressful experience is over3–8. However, the causal links between DA, behaviour during stress and individual differences in resilience are unknown. Here we recorded behaviour in mice simultaneously with DA neuron activity in projections to the nucleus accumbens (NAc) (which signals reward9–12) and the tail striatum (TS) (which signals threat13–16) during social defeat. Supervised and unsupervised behavioural quantification revealed that during stress, resilient and susceptible mice use different behavioural strategies and have distinct activity patterns in DA terminals in the NAc (but not the TS). Neurally, resilient mice have greater activity near the aggressor, including at the onset of fighting back. Conversely, susceptible mice have greater activity at the offset of attacks and onset of fleeing. We also performed optogenetic stimulation of NAc-projecting DA neurons in open loop (randomly timed) during defeat or timed to specific behaviours using real-time behavioural classification. Both open-loop and fighting-back-timed activation promoted resilience and reorganized behaviour during defeat towards resilience-associated patterns. Together, these data provide a link between DA neural activity, resilience and resilience-associated behaviour during the experience of stress.

Suggested Citation

  • Lindsay Willmore & Courtney Cameron & John Yang & Ilana B. Witten & Annegret L. Falkner, 2022. "Behavioural and dopaminergic signatures of resilience," Nature, Nature, vol. 611(7934), pages 124-132, November.
  • Handle: RePEc:nat:nature:v:611:y:2022:i:7934:d:10.1038_s41586-022-05328-2
    DOI: 10.1038/s41586-022-05328-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05328-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05328-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:611:y:2022:i:7934:d:10.1038_s41586-022-05328-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.