IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v611y2022i7934d10.1038_s41586-022-05288-7.html
   My bibliography  Save this article

Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes

Author

Listed:
  • Wei Wei

    (University of Cambridge
    University of Cambridge)

  • Katherine R. Schon

    (University of Cambridge
    University of Cambridge
    University of Cambridge)

  • Greg Elgar

    (Genomics England)

  • Andrea Orioli

    (Genomics England)

  • Melanie Tanguy

    (Genomics England)

  • Adam Giess

    (Genomics England)

  • Marc Tischkowitz

    (University of Cambridge)

  • Mark J. Caulfield

    (Queen Mary University of London)

  • Patrick F. Chinnery

    (University of Cambridge
    University of Cambridge)

Abstract

DNA transfer from cytoplasmic organelles to the cell nucleus is a legacy of the endosymbiotic event—the majority of nuclear-mitochondrial segments (NUMTs) are thought to be ancient, preceding human speciation1–3. Here we analyse whole-genome sequences from 66,083 people—including 12,509 people with cancer—and demonstrate the ongoing transfer of mitochondrial DNA into the nucleus, contributing to a complex NUMT landscape. More than 99% of individuals had at least one of 1,637 different NUMTs, with 1 in 8 individuals having an ultra-rare NUMT that is present in less than 0.1% of the population. More than 90% of the extant NUMTs that we evaluated inserted into the nuclear genome after humans diverged from apes. Once embedded, the sequences were no longer under the evolutionary constraint seen within the mitochondrion, and NUMT-specific mutations had a different mutational signature to mitochondrial DNA. De novo NUMTs were observed in the germline once in every 104 births and once in every 103 cancers. NUMTs preferentially involved non-coding mitochondrial DNA, linking transcription and replication to their origin, with nuclear insertion involving multiple mechanisms including double-strand break repair associated with PR domain zinc-finger protein 9 (PRDM9) binding. The frequency of tumour-specific NUMTs differed between cancers, including a probably causal insertion in a myxoid liposarcoma. We found evidence of selection against NUMTs on the basis of size and genomic location, shaping a highly heterogenous and dynamic human NUMT landscape.

Suggested Citation

  • Wei Wei & Katherine R. Schon & Greg Elgar & Andrea Orioli & Melanie Tanguy & Adam Giess & Marc Tischkowitz & Mark J. Caulfield & Patrick F. Chinnery, 2022. "Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes," Nature, Nature, vol. 611(7934), pages 105-114, November.
  • Handle: RePEc:nat:nature:v:611:y:2022:i:7934:d:10.1038_s41586-022-05288-7
    DOI: 10.1038/s41586-022-05288-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05288-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05288-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yu & Xin Wang & Jordan Fox & Ruofan Yu & Pilendra Thakre & Brenna McCauley & Nicolas Nikoloutsos & Yang Yu & Qian Li & P. J. Hastings & Weiwei Dang & Kaifu Chen & Grzegorz Ira, 2024. "Yeast EndoG prevents genome instability by degrading extranuclear DNA species," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:611:y:2022:i:7934:d:10.1038_s41586-022-05288-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.