IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v611y2022i7934d10.1038_s41586-022-05267-y.html
   My bibliography  Save this article

Volcanic trigger of ocean deoxygenation during Cordilleran ice sheet retreat

Author

Listed:
  • Jianghui Du

    (Oregon State University
    ETH Zürich)

  • Alan C. Mix

    (Oregon State University)

  • Brian A. Haley

    (Oregon State University)

  • Christina L. Belanger

    (Texas A&M University)

  • Sharon

    (Texas A&M University)

Abstract

North Pacific deoxygenation events during the last deglaciation were sustained over millennia by high export productivity, but the triggering mechanisms and their links to deglacial warming remain uncertain1–3. Here we find that initial deoxygenation in the North Pacific immediately after the Cordilleran ice sheet (CIS) retreat4 was associated with increased volcanic ash in seafloor sediments. Timing of volcanic inputs relative to CIS retreat suggests that regional explosive volcanism was initiated by ice unloading5,6. We posit that iron fertilization by volcanic ash7–9 during CIS retreat fuelled ocean productivity in this otherwise iron-limited region, and tipped the marine system towards sustained deoxygenation. We also identify older deoxygenation events linked to CIS retreat over the past approximately 50,000 years (ref. 4). Our findings suggest that the apparent coupling between the atmosphere, ocean, cryosphere and solid-Earth systems occurs on relatively short timescales and can act as an important driver for ocean biogeochemical change.

Suggested Citation

  • Jianghui Du & Alan C. Mix & Brian A. Haley & Christina L. Belanger & Sharon, 2022. "Volcanic trigger of ocean deoxygenation during Cordilleran ice sheet retreat," Nature, Nature, vol. 611(7934), pages 74-80, November.
  • Handle: RePEc:nat:nature:v:611:y:2022:i:7934:d:10.1038_s41586-022-05267-y
    DOI: 10.1038/s41586-022-05267-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05267-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05267-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhouling Zhang & Antao Xu & Ed Hathorne & Marcus Gutjahr & Thomas J. Browning & Kathleen J. Gosnell & Te Liu & Zvi Steiner & Rainer Kiko & Zhongwei Yuan & Haoran Liu & Eric P. Achterberg & Martin Fran, 2024. "Substantial trace metal input from the 2022 Hunga Tonga-Hunga Ha’apai eruption into the South Pacific," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:611:y:2022:i:7934:d:10.1038_s41586-022-05267-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.