IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v610y2022i7933d10.1038_s41586-022-05333-5.html
   My bibliography  Save this article

The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron

Author

Listed:
  • Saki Ichikawa

    (Harvard University)

  • Hope A. Flaxman

    (Harvard University)

  • Wenqing Xu

    (Harvard University)

  • Nandini Vallavoju

    (Harvard University)

  • Hannah C. Lloyd

    (Harvard University)

  • Binyou Wang

    (University of Southern California)

  • Dacheng Shen

    (Harvard University)

  • Matthew R. Pratt

    (University of Southern California
    University of Southern California)

  • Christina M. Woo

    (Harvard University)

Abstract

The ubiquitin E3 ligase substrate adapter cereblon (CRBN) is a target of thalidomide and lenalidomide1, therapeutic agents used in the treatment of haematopoietic malignancies2–4 and as ligands for targeted protein degradation5–7. These agents are proposed to mimic a naturally occurring degron; however, the structural motif recognized by the thalidomide-binding domain of CRBN remains unknown. Here we report that C-terminal cyclic imides, post-translational modifications that arise from intramolecular cyclization of glutamine or asparagine residues, are physiological degrons on substrates for CRBN. Dipeptides bearing the C-terminal cyclic imide degron substitute for thalidomide when embedded within bifunctional chemical degraders. Addition of the degron to the C terminus of proteins induces CRBN-dependent ubiquitination and degradation in vitro and in cells. C-terminal cyclic imides form adventitiously on physiologically relevant timescales throughout the human proteome to afford a degron that is endogenously recognized and removed by CRBN. The discovery of the C-terminal cyclic imide degron defines a regulatory process that may affect the physiological function and therapeutic engagement of CRBN.

Suggested Citation

  • Saki Ichikawa & Hope A. Flaxman & Wenqing Xu & Nandini Vallavoju & Hannah C. Lloyd & Binyou Wang & Dacheng Shen & Matthew R. Pratt & Christina M. Woo, 2022. "The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron," Nature, Nature, vol. 610(7933), pages 775-782, October.
  • Handle: RePEc:nat:nature:v:610:y:2022:i:7933:d:10.1038_s41586-022-05333-5
    DOI: 10.1038/s41586-022-05333-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05333-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05333-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ka-Yiu Edwin Kong & Susmitha Shankar & Frank Rühle & Anton Khmelinskii, 2023. "Orphan quality control by an SCF ubiquitin ligase directed to pervasive C-degrons," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Gang Xue & Jianing Xie & Matthias Hinterndorfer & Marko Cigler & Lara Dötsch & Hana Imrichova & Philipp Lampe & Xiufen Cheng & Soheila Rezaei Adariani & Georg E. Winter & Herbert Waldmann, 2023. "Discovery of a Drug-like, Natural Product-Inspired DCAF11 Ligand Chemotype," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:610:y:2022:i:7933:d:10.1038_s41586-022-05333-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.