Author
Listed:
- Gang Li
(IRAP, Université de Toulouse, CNRS, CNES, UPS)
- Sébastien Deheuvels
(IRAP, Université de Toulouse, CNRS, CNES, UPS)
- Jérôme Ballot
(IRAP, Université de Toulouse, CNRS, CNES, UPS)
- François Lignières
(IRAP, Université de Toulouse, CNRS, CNES, UPS)
Abstract
A red giant star is an evolved low- or intermediate-mass star that has exhausted its central hydrogen content, leaving a helium core and a hydrogen-burning shell. Oscillations of stars can be observed as periodic dimmings and brightenings in the optical light curves. In red giant stars, non-radial acoustic waves couple to gravity waves and give rise to mixed modes, which behave as pressure modes in the envelope and gravity modes in the core. These modes have previously been used to measure the internal rotation of red giants1,2, leading to the conclusion that purely hydrodynamical processes of angular momentum transport from the core are too inefficient3. Magnetic fields could produce the additional required transport4–6. However, owing to the lack of direct measurements of magnetic fields in stellar interiors, little is currently known about their properties. Asteroseismology can provide direct detection of magnetic fields because, like rotation, the fields induce shifts in the oscillation mode frequencies7–12. Here we report the measurement of magnetic fields in the cores of three red giant stars observed with the Kepler13 satellite. The fields induce shifts that break the symmetry of dipole mode multiplets. We thus measure field strengths ranging from about 30 kilogauss to about 100 kilogauss in the vicinity of the hydrogen-burning shell and place constraints on the field topology.
Suggested Citation
Gang Li & Sébastien Deheuvels & Jérôme Ballot & François Lignières, 2022.
"Magnetic fields of 30 to 100 kG in the cores of red giant stars,"
Nature, Nature, vol. 610(7930), pages 43-46, October.
Handle:
RePEc:nat:nature:v:610:y:2022:i:7930:d:10.1038_s41586-022-05176-0
DOI: 10.1038/s41586-022-05176-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:610:y:2022:i:7930:d:10.1038_s41586-022-05176-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.