IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v609y2022i7929d10.1038_s41586-022-05087-0.html
   My bibliography  Save this article

Anomalous slip in body-centred cubic metals

Author

Listed:
  • Daniel Caillard

    (CEMES-CNRS)

  • Baptiste Bienvenu

    (Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique)

  • Emmanuel Clouet

    (Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique)

Abstract

Crystal strength and plastic flow are controlled by the motion and interaction of dislocations, the line defects carrying atomic shear increments. Whereas, in most crystals, deformation develops in the crystallographic planes in which the glide force acting on dislocations is maximum, plasticity in body-centred cubic metals is more complex. Slip systems in which the resolved shear stress is not the highest can dominate at low temperature, leading to anomalous slip1,2. Using in situ tensile tests in a transmission electron microscope we show that anomalous slip arises from the high mobility of multi-junctions3, that is, junctions between more than two dislocations, which glide at a velocity several orders of magnitude larger than single dislocations. These multi-junctions result from the interaction of a simple binary junction with a gliding dislocation. Although elasticity theory predicts that these binary junctions should be unstable in crystals with a weak elastic anisotropy such as tungsten, both experiments and atomistic simulations reveal that such junctions can be created under dynamic conditions, in agreement with the existence of anomalous slip in almost all body-centred cubic metals, including tungsten4,5.

Suggested Citation

  • Daniel Caillard & Baptiste Bienvenu & Emmanuel Clouet, 2022. "Anomalous slip in body-centred cubic metals," Nature, Nature, vol. 609(7929), pages 936-941, September.
  • Handle: RePEc:nat:nature:v:609:y:2022:i:7929:d:10.1038_s41586-022-05087-0
    DOI: 10.1038/s41586-022-05087-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05087-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05087-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong An & Xinyu Jiang & Feng Gao & Christian Schäfer & Junjun Qiu & Nan Shi & Xiaokun Song & Manyao Zhang & Chris E. Finlayson & Xuezhi Zheng & Xiuhong Li & Feng Tian & Bin Zhu & Tan Sui & Xianhong Ha, 2024. "Strain to shine: stretching-induced three-dimensional symmetries in nanoparticle-assembled photonic crystals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:609:y:2022:i:7929:d:10.1038_s41586-022-05087-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.