IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v609y2022i7928d10.1038_s41586-022-05108-y.html
   My bibliography  Save this article

Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency

Author

Listed:
  • Hoang-Long Du

    (Monash University
    Monash University)

  • Manjunath Chatti

    (Monash University
    Monash University)

  • Rebecca Y. Hodgetts

    (Monash University
    Monash University)

  • Pavel V. Cherepanov

    (Monash University)

  • Cuong K. Nguyen

    (Monash University
    Monash University)

  • Karolina Matuszek

    (Monash University)

  • Douglas R. MacFarlane

    (Monash University
    Monash University)

  • Alexandr N. Simonov

    (Monash University
    Monash University)

Abstract

In addition to its use in the fertilizer and chemical industries1, ammonia is currently seen as a potential replacement for carbon-based fuels and as a carrier for worldwide transportation of renewable energy2. Implementation of this vision requires transformation of the existing fossil-fuel-based technology for NH3 production3 to a simpler, scale-flexible technology, such as the electrochemical lithium-mediated nitrogen-reduction reaction3,4. This provides a genuine pathway from N2 to ammonia, but it is currently hampered by limited yield rates and low efficiencies4–12. Here we investigate the role of the electrolyte in this reaction and present a high-efficiency, robust process that is enabled by compact ionic layering in the electrode–electrolyte interface region. The interface is generated by a high-concentration imide-based lithium-salt electrolyte, providing stabilized ammonia yield rates of 150 ± 20 nmol s−1 cm−2 and a current-to-ammonia efficiency that is close to 100%. The ionic assembly formed at the electrode surface suppresses the electrolyte decomposition and supports stable N2 reduction. Our study highlights the interrelation between the performance of the lithium-mediated nitrogen-reduction reaction and the physicochemical properties of the electrode–electrolyte interface. We anticipate that these findings will guide the development of a robust, high-performance process for sustainable ammonia production.

Suggested Citation

  • Hoang-Long Du & Manjunath Chatti & Rebecca Y. Hodgetts & Pavel V. Cherepanov & Cuong K. Nguyen & Karolina Matuszek & Douglas R. MacFarlane & Alexandr N. Simonov, 2022. "Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency," Nature, Nature, vol. 609(7928), pages 722-727, September.
  • Handle: RePEc:nat:nature:v:609:y:2022:i:7928:d:10.1038_s41586-022-05108-y
    DOI: 10.1038/s41586-022-05108-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05108-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05108-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Beibei & Wu, Zhaoting & Zhou, Shengquan & Lv, Jingwen & Liu, Xiaoyun & Wu, Wenzhu & Chen, Guanyi, 2024. "A critical review of NH3–H2 combustion mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Wei Liu & Mengyang Xia & Chao Zhao & Ben Chong & Jiahe Chen & He Li & Honghui Ou & Guidong Yang, 2024. "Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Huize Wang & Ranga Rohit Seemakurthi & Gao-Feng Chen & Volker Strauss & Oleksandr Savateev & Guangtong Hai & Liangxin Ding & Núria López & Haihui Wang & Markus Antonietti, 2023. "Laser-induced nitrogen fixation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Xianbiao Fu & Aoni Xu & Jakob B. Pedersen & Shaofeng Li & Rokas Sažinas & Yuanyuan Zhou & Suzanne Z. Andersen & Mattia Saccoccio & Niklas H. Deissler & Jon Bjarke Valbæk Mygind & Jakob Kibsgaard & Pet, 2024. "Phenol as proton shuttle and buffer for lithium-mediated ammonia electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:609:y:2022:i:7928:d:10.1038_s41586-022-05108-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.