IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v609y2022i7926d10.1038_s41586-022-05111-3.html
   My bibliography  Save this article

LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages

Author

Listed:
  • Zheng Wei

    (Yale University School of Medicine
    Yale University)

  • Joonseok Oh

    (Yale University
    Yale University)

  • Richard A. Flavell

    (Yale University School of Medicine
    Yale University School of Medicine)

  • Jason M. Crawford

    (Yale University
    Yale University
    Yale University School of Medicine)

Abstract

The mammalian immune system uses various pattern recognition receptors to recognize invaders and host damage and transmits this information to downstream immunometabolic signalling outcomes. Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages and serves a central regulatory role in multiple inflammatory diseases such as inflammatory bowel diseases, arthritis and clearance of microbial infection1–4. However, the biochemical roles required for LACC1 functions remain largely undefined. Here we elucidated a shared biochemical function of LACC1 in mice and humans, converting l-citrulline to l-ornithine (l-Orn) and isocyanic acid and serving as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism. We validated the genetic and mechanistic connections among NOS2, LACC1 and ornithine decarboxylase 1 (ODC1) in mouse models and bone marrow-derived macrophages infected by Salmonella enterica Typhimurium. Strikingly, LACC1 phenotypes required upstream NOS2 and downstream ODC1, and Lacc1–/– chemical complementation with its product l-Orn significantly restored wild-type activities. Our findings illuminate a previously unidentified pathway in inflammatory macrophages, explain why its deficiency may contribute to human inflammatory diseases and suggest that l-Orn could serve as a nutraceutical to ameliorate LACC1-associated immunological dysfunctions such as arthritis or inflammatory bowel disease.

Suggested Citation

  • Zheng Wei & Joonseok Oh & Richard A. Flavell & Jason M. Crawford, 2022. "LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages," Nature, Nature, vol. 609(7926), pages 348-353, September.
  • Handle: RePEc:nat:nature:v:609:y:2022:i:7926:d:10.1038_s41586-022-05111-3
    DOI: 10.1038/s41586-022-05111-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05111-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05111-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:609:y:2022:i:7926:d:10.1038_s41586-022-05111-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.