IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v609y2022i7926d10.1038_s41586-022-05075-4.html
   My bibliography  Save this article

Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts

Author

Listed:
  • Insoo Ro

    (University of California, Santa Barbara
    Seoul National University of Science and Technology
    Catalysis Center for Energy Innovation)

  • Ji Qi

    (University of California, Santa Barbara
    Catalysis Center for Energy Innovation)

  • Seungyeon Lee

    (Catalysis Center for Energy Innovation
    University of Delaware)

  • Mingjie Xu

    (University of California Irvine)

  • Xingxu Yan

    (University of California Irvine)

  • Zhenhua Xie

    (Brookhaven National Laboratory
    Columbia University)

  • Gregory Zakem

    (University of California, Santa Barbara)

  • Austin Morales

    (University of California, Santa Barbara)

  • Jingguang G. Chen

    (Brookhaven National Laboratory
    Columbia University)

  • Xiaoqing Pan

    (University of California Irvine
    University of California, Irvine
    University of California Irvine, Irvine)

  • Dionisios G. Vlachos

    (Catalysis Center for Energy Innovation
    University of Delaware)

  • Stavros Caratzoulas

    (University of Delaware)

  • Phillip Christopher

    (University of California, Santa Barbara
    Catalysis Center for Energy Innovation)

Abstract

Metal-catalysed reactions are often hypothesized to proceed on bifunctional active sites, whereby colocalized reactive species facilitate distinct elementary steps in a catalytic cycle1–8. Bifunctional active sites have been established on homogeneous binuclear organometallic catalysts9–11. Empirical evidence exists for bifunctional active sites on supported metal catalysts, for example, at metal–oxide support interfaces2,6,7,12. However, elucidating bifunctional reaction mechanisms on supported metal catalysts is challenging due to the distribution of potential active-site structures, their dynamic reconstruction and required non-mean-field kinetic descriptions7,12,13. We overcome these limitations by synthesizing supported, atomically dispersed rhodium–tungsten oxide (Rh-WOx) pair site catalysts. The relative simplicity of the pair site structure and sufficient description by mean-field modelling enable correlation of the experimental kinetics with first principles-based microkinetic simulations. The Rh-WOx pair sites catalyse ethylene hydroformylation through a bifunctional mechanism involving Rh-assisted WOx reduction, transfer of ethylene from WOx to Rh and H2 dissociation at the Rh-WOx interface. The pair sites exhibited >95% selectivity at a product formation rate of 0.1 gpropanal cm−3 h−1 in gas-phase ethylene hydroformylation. Our results demonstrate that oxide-supported pair sites can enable bifunctional reaction mechanisms with high activity and selectivity for reactions that are performed in industry using homogeneous catalysts.

Suggested Citation

  • Insoo Ro & Ji Qi & Seungyeon Lee & Mingjie Xu & Xingxu Yan & Zhenhua Xie & Gregory Zakem & Austin Morales & Jingguang G. Chen & Xiaoqing Pan & Dionisios G. Vlachos & Stavros Caratzoulas & Phillip Chri, 2022. "Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts," Nature, Nature, vol. 609(7926), pages 287-292, September.
  • Handle: RePEc:nat:nature:v:609:y:2022:i:7926:d:10.1038_s41586-022-05075-4
    DOI: 10.1038/s41586-022-05075-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05075-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05075-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifeng Liu & Zhiqiang Liu & Yu Hui & Liang Wang & Jian Zhang & Xianfeng Yi & Wei Chen & Chengtao Wang & Hai Wang & Yucai Qin & Lijuan Song & Anmin Zheng & Feng-Shou Xiao, 2023. "Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson’s catalyst for hydroformylation of olefins," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Ji Yang & Lu Wang & Jiawei Wan & Farid El Gabaly & Andre L. Fernandes Cauduro & Bernice E. Mills & Jeng-Lung Chen & Liang-Ching Hsu & Daewon Lee & Xiao Zhao & Haimei Zheng & Miquel Salmeron & Caiqi Wa, 2024. "Atomically synergistic Zn-Cr catalyst for iso-stoichiometric co-conversion of ethane and CO2 to ethylene and CO," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Benhan Fan & Miao Jiang & Guoqing Wang & Yang Zhao & Bingbao Mei & Jingfeng Han & Lei Ma & Cunyao Li & Guangjin Hou & Tao Wu & Li Yan & Yunjie Ding, 2024. "Elucidation of hemilabile-coordination-induced tunable regioselectivity in single-site Rh-catalyzed heterogeneous hydroformylation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Bin Zhang & Haiyang Yuan & Ye Liu & Zijie Deng & Mark Douthwaite & Nicholas F. Dummer & Richard J. Lewis & Xingwu Liu & Sen Luan & Minghua Dong & Tianjiao Wang & Qingling Xu & Zhijuan Zhao & Huizhen L, 2024. "Ambient-pressure alkoxycarbonylation for sustainable synthesis of ester," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Minjie Zhao & Chengeng Li & Daviel Gómez & Francisco Gonell & Vlad Martin Diaconescu & Laura Simonelli & Miguel Lopez Haro & Jose Juan Calvino & Debora Motta Meira & Patricia Concepción & Avelino Corm, 2023. "Low-temperature hydroformylation of ethylene by phosphorous stabilized Rh sites in a one-pot synthesized Rh-(O)-P-MFI zeolite," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:609:y:2022:i:7926:d:10.1038_s41586-022-05075-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.