IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v607y2022i7920d10.1038_s41586-022-04896-7.html
   My bibliography  Save this article

ADAR1 mutation causes ZBP1-dependent immunopathology

Author

Listed:
  • Nicholas W. Hubbard

    (University of Washington)

  • Joshua M. Ames

    (University of Washington)

  • Megan Maurano

    (University of Washington)

  • Lan H. Chu

    (University of Washington)

  • Kim Y. Somfleth

    (University of Washington)

  • Nandan S. Gokhale

    (University of Washington)

  • Margo Werner

    (University of Washington)

  • Jessica M. Snyder

    (University of Washington)

  • Katrina Lichauco

    (University of Washington)

  • Ram Savan

    (University of Washington)

  • Daniel B. Stetson

    (University of Washington)

  • Andrew Oberst

    (University of Washington)

Abstract

The RNA-editing enzyme ADAR1 is essential for the suppression of innate immune activation and pathology caused by aberrant recognition of self-RNA, a role it carries out by disrupting the duplex structure of endogenous double-stranded RNA species1,2. A point mutation in the sequence encoding the Z-DNA-binding domain (ZBD) of ADAR1 is associated with severe autoinflammatory disease3–5. ZBP1 is the only other ZBD-containing mammalian protein6, and its activation can trigger both cell death and transcriptional responses through the kinases RIPK1 and RIPK3, and the protease caspase 8 (refs. 7–9). Here we show that the pathology caused by alteration of the ZBD of ADAR1 is driven by activation of ZBP1. We found that ablation of ZBP1 fully rescued the overt pathology caused by ADAR1 alteration, without fully reversing the underlying inflammatory program caused by this alteration. Whereas loss of RIPK3 partially phenocopied the protective effects of ZBP1 ablation, combined deletion of caspase 8 and RIPK3, or of caspase 8 and MLKL, unexpectedly exacerbated the pathogenic effects of ADAR1 alteration. These findings indicate that ADAR1 is a negative regulator of sterile ZBP1 activation, and that ZBP1-dependent signalling underlies the autoinflammatory pathology caused by alteration of ADAR1.

Suggested Citation

  • Nicholas W. Hubbard & Joshua M. Ames & Megan Maurano & Lan H. Chu & Kim Y. Somfleth & Nandan S. Gokhale & Margo Werner & Jessica M. Snyder & Katrina Lichauco & Ram Savan & Daniel B. Stetson & Andrew O, 2022. "ADAR1 mutation causes ZBP1-dependent immunopathology," Nature, Nature, vol. 607(7920), pages 769-775, July.
  • Handle: RePEc:nat:nature:v:607:y:2022:i:7920:d:10.1038_s41586-022-04896-7
    DOI: 10.1038/s41586-022-04896-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04896-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04896-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuo Wang & An Song & Jun Xie & Yuan-Yuan Wang & Wen-Da Wang & Meng-Jie Zhang & Zhi-Zhong Wu & Qi-Chao Yang & Hao Li & Junjie Zhang & Zhi-Jun Sun, 2024. "Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Marlon S. Zambrano-Mila & Monika Witzenberger & Zohar Rosenwasser & Anna Uzonyi & Ronit Nir & Shay Ben-Aroya & Erez Y. Levanon & Schraga Schwartz, 2023. "Dissecting the basis for differential substrate specificity of ADAR1 and ADAR2," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Amir Dailamy & Weiqi Lyu & Sami Nourreddine & Michael Tong & Joseph Rainaldi & Daniella McDonald & Rebecca Panwala & Alysson Muotri & Michael S. Breen & Kun Zhang & Prashant Mali, 2024. "Charting and probing the activity of ADARs in human development and cell-fate specification," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:607:y:2022:i:7920:d:10.1038_s41586-022-04896-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.