IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v606y2022i7916d10.1038_s41586-022-04829-4.html
   My bibliography  Save this article

Mechanism of replication origin melting nucleated by CMG helicase assembly

Author

Listed:
  • Jacob S. Lewis

    (The Francis Crick Institute)

  • Marta H. Gross

    (The Francis Crick Institute)

  • Joana Sousa

    (The Francis Crick Institute
    UCB Pharma)

  • Sarah S. Henrikus

    (The Francis Crick Institute)

  • Julia F. Greiwe

    (The Francis Crick Institute)

  • Andrea Nans

    (The Francis Crick Institute)

  • John F. X. Diffley

    (The Francis Crick Institute)

  • Alessandro Costa

    (The Francis Crick Institute)

Abstract

The activation of eukaryotic origins of replication occurs in temporally separated steps to ensure that chromosomes are copied only once per cell cycle. First, the MCM helicase is loaded onto duplex DNA as an inactive double hexamer. Activation occurs after the recruitment of a set of firing factors that assemble two Cdc45–MCM–GINS (CMG) holo-helicases. CMG formation leads to the underwinding of DNA on the path to the establishment of the replication fork, but whether DNA becomes melted at this stage is unknown1. Here we use cryo-electron microscopy to image ATP-dependent CMG assembly on a chromatinized origin, reconstituted in vitro with purified yeast proteins. We find that CMG formation disrupts the double hexamer interface and thereby exposes duplex DNA in between the two CMGs. The two helicases remain tethered, which gives rise to a splayed dimer, with implications for origin activation and replisome integrity. Inside each MCM ring, the double helix becomes untwisted and base pairing is broken. This comes as the result of ATP-triggered conformational changes in MCM that involve DNA stretching and protein-mediated stabilization of three orphan bases. Mcm2 pore-loop residues that engage DNA in our structure are dispensable for double hexamer loading and CMG formation, but are essential to untwist the DNA and promote replication. Our results explain how ATP binding nucleates origin DNA melting by the CMG and maintains replisome stability at initiation.

Suggested Citation

  • Jacob S. Lewis & Marta H. Gross & Joana Sousa & Sarah S. Henrikus & Julia F. Greiwe & Andrea Nans & John F. X. Diffley & Alessandro Costa, 2022. "Mechanism of replication origin melting nucleated by CMG helicase assembly," Nature, Nature, vol. 606(7916), pages 1007-1014, June.
  • Handle: RePEc:nat:nature:v:606:y:2022:i:7916:d:10.1038_s41586-022-04829-4
    DOI: 10.1038/s41586-022-04829-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04829-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04829-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhichun Xu & Jianrong Feng & Daqi Yu & Yunjing Huo & Xiaohui Ma & Wai Hei Lam & Zheng Liu & Xiang David Li & Toyotaka Ishibashi & Shangyu Dang & Yuanliang Zhai, 2023. "Synergism between CMG helicase and leading strand DNA polymerase at replication fork," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Matthew Day & Bilal Tetik & Milena Parlak & Yasser Almeida-Hernández & Markus Räschle & Farnusch Kaschani & Heike Siegert & Anika Marko & Elsa Sanchez-Garcia & Markus Kaiser & Isabel A. Barker & Laure, 2024. "TopBP1 utilises a bipartite GINS binding mode to support genome replication," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Daniel Ramírez Montero & Humberto Sánchez & Edo Veen & Theo Laar & Belén Solano & John F. X. Diffley & Nynke H. Dekker, 2023. "Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Yue Wu & Qiongdan Zhang & Yuhan Lin & Wai Hei Lam & Yuanliang Zhai, 2024. "Replication licensing regulated by a short linear motif within an intrinsically disordered region of origin recognition complex," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Ananya Acharya & Hélène Bret & Jen-Wei Huang & Martin Mütze & Martin Göse & Vera Maria Kissling & Ralf Seidel & Alberto Ciccia & Raphaël Guérois & Petr Cejka, 2024. "Mechanism of DNA unwinding by MCM8-9 in complex with HROB," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:606:y:2022:i:7916:d:10.1038_s41586-022-04829-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.