IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v606y2022i7916d10.1038_s41586-022-04767-1.html
   My bibliography  Save this article

Breakage of cytoplasmic chromosomes by pathological DNA base excision repair

Author

Listed:
  • Shangming Tang

    (Howard Hughes Medical Institute
    Dana-Farber Cancer Institute
    Blavatnik Institute, Harvard Medical School)

  • Ema Stokasimov

    (Howard Hughes Medical Institute
    Dana-Farber Cancer Institute
    Blavatnik Institute, Harvard Medical School)

  • Yuxiang Cui

    (University of California, Riverside)

  • David Pellman

    (Howard Hughes Medical Institute
    Dana-Farber Cancer Institute
    Blavatnik Institute, Harvard Medical School)

Abstract

Chromothripsis is a catastrophic mutational process that promotes tumorigenesis and causes congenital disease1–4. Chromothripsis originates from aberrations of nuclei called micronuclei or chromosome bridges5–8. These structures are associated with fragile nuclear envelopes that spontaneously rupture9,10, leading to DNA damage when chromatin is exposed to the interphase cytoplasm. Here we identify a mechanism explaining a major fraction of this DNA damage. Micronuclei accumulate large amounts of RNA–DNA hybrids, which are edited by adenine deaminases acting on RNA (ADAR enzymes) to generate deoxyinosine. Deoxyinosine is then converted into abasic sites by a DNA base excision repair (BER) glycosylase, N-methyl-purine DNA glycosylase11,12 (MPG). These abasic sites are cleaved by the BER endonuclease, apurinic/apyrimidinic endonuclease12 (APE1), creating single-stranded DNA nicks that can be converted to DNA double strand breaks by DNA replication or when closely spaced nicks occur on opposite strands13,14. This model predicts that MPG should be able to remove the deoxyinosine base from the DNA strand of RNA–DNA hybrids, which we demonstrate using purified proteins and oligonucleotide substrates. These findings identify a mechanism for fragmentation of micronuclear chromosomes, an important step in generating chromothripsis. Rather than breaking any normal chromosome, we propose that the eukaryotic cytoplasm only damages chromosomes with pre-existing defects such as the DNA base abnormality described here.

Suggested Citation

  • Shangming Tang & Ema Stokasimov & Yuxiang Cui & David Pellman, 2022. "Breakage of cytoplasmic chromosomes by pathological DNA base excision repair," Nature, Nature, vol. 606(7916), pages 930-936, June.
  • Handle: RePEc:nat:nature:v:606:y:2022:i:7916:d:10.1038_s41586-022-04767-1
    DOI: 10.1038/s41586-022-04767-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04767-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04767-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Hu & Jose Espejo Valle-Inclán & Rashmi Dahiya & Alison Guyer & Alice Mazzagatti & Elizabeth G. Maurais & Justin L. Engel & Huiming Lu & Anthony J. Davis & Isidro Cortés-Ciriano & Peter Ly, 2024. "Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Rishi Kumar Nageshan & Raquel Ortega & Nevan Krogan & Julia Promisel Cooper, 2024. "Fate of telomere entanglements is dictated by the timing of anaphase midregion nuclear envelope breakdown," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Kate M. MacDonald & Shirony Nicholson-Puthenveedu & Maha M. Tageldein & Sarika Khasnis & Cheryl H. Arrowsmith & Shane M. Harding, 2023. "Antecedent chromatin organization determines cGAS recruitment to ruptured micronuclei," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:606:y:2022:i:7916:d:10.1038_s41586-022-04767-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.