IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v606y2022i7915d10.1038_s41586-022-04703-3.html
   My bibliography  Save this article

Many-body theory of positron binding to polyatomic molecules

Author

Listed:
  • Jaroslav Hofierka

    (Queen’s University Belfast)

  • Brian Cunningham

    (Queen’s University Belfast)

  • Charlie M. Rawlins

    (Queen’s University Belfast)

  • Charles H. Patterson

    (Trinity College Dublin)

  • Dermot G. Green

    (Queen’s University Belfast)

Abstract

Positron binding to molecules is key to extremely enhanced positron annihilation and positron-based molecular spectroscopy1. Although positron binding energies have been measured for about 90 polyatomic molecules1–6, an accurate ab initio theoretical description of positron–molecule binding has remained elusive. Of the molecules studied experimentally, ab initio calculations exist for only six; these calculations agree with experiments on polar molecules to at best 25 per cent accuracy and fail to predict binding in nonpolar molecules. The theoretical challenge stems from the need to accurately describe the strong many-body correlations including polarization of the electron cloud, screening of the electron–positron Coulomb interaction and the unique process of virtual-positronium formation (in which a molecular electron temporarily tunnels to the positron)1. Here we develop a many-body theory of positron–molecule interactions that achieves excellent agreement with experiment (to within 1 per cent in cases) and predicts binding in formamide and nucleobases. Our framework quantitatively captures the role of many-body correlations and shows their crucial effect on enhancing binding in polar molecules, enabling binding in nonpolar molecules, and increasing annihilation rates by 2 to 3 orders of magnitude. Our many-body approach can be extended to positron scattering and annihilation γ-ray spectra in molecules and condensed matter, to provide the fundamental insight and predictive capability required to improve materials science diagnostics7,8, develop antimatter-based technologies (including positron traps, beams and positron emission tomography)8–10, and understand positrons in the Galaxy11.

Suggested Citation

  • Jaroslav Hofierka & Brian Cunningham & Charlie M. Rawlins & Charles H. Patterson & Dermot G. Green, 2022. "Many-body theory of positron binding to polyatomic molecules," Nature, Nature, vol. 606(7915), pages 688-693, June.
  • Handle: RePEc:nat:nature:v:606:y:2022:i:7915:d:10.1038_s41586-022-04703-3
    DOI: 10.1038/s41586-022-04703-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04703-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04703-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gino Cassella & W. M. C. Foulkes & David Pfau & James S. Spencer, 2024. "Neural network variational Monte Carlo for positronic chemistry," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:606:y:2022:i:7915:d:10.1038_s41586-022-04703-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.