IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v606y2022i7913d10.1038_s41586-022-04639-8.html
   My bibliography  Save this article

Observation of ultracold atomic bubbles in orbital microgravity

Author

Listed:
  • R. A. Carollo

    (Bates College)

  • D. C. Aveline

    (California Institute of Technology)

  • B. Rhyno

    (University of Illinois at Urbana-Champaign)

  • S. Vishveshwara

    (University of Illinois at Urbana-Champaign)

  • C. Lannert

    (Smith College
    University of Massachusetts)

  • J. D. Murphree

    (Bates College)

  • E. R. Elliott

    (California Institute of Technology)

  • J. R. Williams

    (California Institute of Technology)

  • R. J. Thompson

    (California Institute of Technology)

  • N. Lundblad

    (Bates College)

Abstract

Substantial leaps in the understanding of quantum systems have been driven by exploring geometry, topology, dimensionality and interactions in ultracold atomic ensembles1–6. A system where atoms evolve while confined on an ellipsoidal surface represents a heretofore unexplored geometry and topology. Realizing an ultracold bubble—potentially Bose–Einstein condensed—relates to areas of interest including quantized-vortex flow constrained to a closed surface topology, collective modes and self-interference via bubble expansion7–17. Large ultracold bubbles, created by inflating smaller condensates, directly tie into Hubble-analogue expansion physics18–20. Here we report observations from the NASA Cold Atom Lab21 facility onboard the International Space Station of bubbles of ultracold atoms created using a radiofrequency-dressing protocol. We observe bubble configurations of varying size and initial temperature, and explore bubble thermodynamics, demonstrating substantial cooling associated with inflation. We achieve partial coverings of bubble traps greater than one millimetre in size with ultracold films of inferred few-micrometre thickness, and we observe the dynamics of shell structures projected into free-evolving harmonic confinement. The observations are among the first measurements made with ultracold atoms in space, using perpetual freefall to explore quantum systems that are prohibitively difficult to create on Earth. This work heralds future studies (in orbital microgravity) of the Bose–Einstein condensed bubble, the character of its excitations and the role of topology in its evolution.

Suggested Citation

  • R. A. Carollo & D. C. Aveline & B. Rhyno & S. Vishveshwara & C. Lannert & J. D. Murphree & E. R. Elliott & J. R. Williams & R. J. Thompson & N. Lundblad, 2022. "Observation of ultracold atomic bubbles in orbital microgravity," Nature, Nature, vol. 606(7913), pages 281-286, June.
  • Handle: RePEc:nat:nature:v:606:y:2022:i:7913:d:10.1038_s41586-022-04639-8
    DOI: 10.1038/s41586-022-04639-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04639-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04639-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naceur Gaaloul & Matthias Meister & Robin Corgier & Annie Pichery & Patrick Boegel & Waldemar Herr & Holger Ahlers & Eric Charron & Jason R. Williams & Robert J. Thompson & Wolfgang P. Schleich & Erns, 2022. "A space-based quantum gas laboratory at picokelvin energy scales," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:606:y:2022:i:7913:d:10.1038_s41586-022-04639-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.