Author
Listed:
- Sarajo K. Mohanta
(Ludwig-Maximilians-Universität München (LMU)
German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance)
- Li Peng
(Guizhou University of Traditional Chinese Medicine)
- Yuanfang Li
(Ludwig-Maximilians-Universität München (LMU))
- Shu Lu
(Ludwig-Maximilians-Universität München (LMU))
- Ting Sun
(Ludwig-Maximilians-Universität München (LMU))
- Lorenzo Carnevale
(IRCCS Neuromed)
- Marialuisa Perrotta
(IRCCS Neuromed
Sapienza University of Rome)
- Zhe Ma
(Ludwig-Maximilians-Universität München (LMU))
- Benjamin Förstera
(Klinikum der Universität München, Ludwig-Maximilians-Universität Munich (LMU))
- Karen Stanic
(Klinikum der Universität München, Ludwig-Maximilians-Universität Munich (LMU))
- Chuankai Zhang
(Ludwig-Maximilians-Universität München (LMU))
- Xi Zhang
(Ludwig-Maximilians-Universität München (LMU))
- Piotr Szczepaniak
(Jagiellonian University Collegium Medicum)
- Mariaelvy Bianchini
(Ludwig-Maximilians-Universität München (LMU))
- Borhan R. Saeed
(University of Gothenburg)
- Raimondo Carnevale
(IRCCS Neuromed)
- Desheng Hu
(Deutsches Forschungszentrum für Gesundheit und Umwelt)
- Ryszard Nosalski
(University of Glasgow)
- Fabio Pallante
(IRCCS Neuromed)
- Michael Beer
(University of Jena, Jena University Hospital)
- Donato Santovito
(Ludwig-Maximilians-Universität München (LMU)
German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance
Unit of Milan, National Research Council)
- Ali Ertürk
(Klinikum der Universität München, Ludwig-Maximilians-Universität Munich (LMU))
- Thomas C. Mettenleiter
(Friedrich-Loeffler-Institut)
- Barbara G. Klupp
(Friedrich-Loeffler-Institut)
- Remco T. A. Megens
(Ludwig-Maximilians-Universität München (LMU)
German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance
Maastricht University)
- Sabine Steffens
(Ludwig-Maximilians-Universität München (LMU)
German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance)
- Jaroslav Pelisek
(Technical University of Munich
University Hospital Zurich)
- Hans-Henning Eckstein
(Technical University of Munich)
- Robert Kleemann
(The Netherlands Organization for Applied Scientific Research (TNO)
Leiden University Medical Center)
- Livia Habenicht
(Technische Universität München, Klinikum rechts der Isar)
- Ziad Mallat
(University of Cambridge)
- Jean-Baptiste Michel
(INSERM UMRS 1148, University Paris Diderot (P7), GH Bichat-Claude Bernard)
- Jürgen Bernhagen
(German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance
Klinikum der Universität München, Ludwig-Maximilians-Universität Munich (LMU)
Munich Cluster for Systems Neurology (SyNergy))
- Martin Dichgans
(Klinikum der Universität München, Ludwig-Maximilians-Universität Munich (LMU)
Munich Cluster for Systems Neurology (SyNergy))
- Giuseppe D’Agostino
(University of Manchester)
- Tomasz J. Guzik
(Jagiellonian University Collegium Medicum
University of Glasgow)
- Peder S. Olofsson
(Karolinska University Hospital)
- Changjun Yin
(Ludwig-Maximilians-Universität München (LMU)
German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance)
- Christian Weber
(Ludwig-Maximilians-Universität München (LMU)
German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance
Munich Cluster for Systems Neurology (SyNergy)
Maastricht University)
- Giuseppe Lembo
(IRCCS Neuromed
Sapienza University of Rome)
- Daniela Carnevale
(IRCCS Neuromed
Sapienza University of Rome)
- Andreas J. R. Habenicht
(Ludwig-Maximilians-Universität München (LMU)
German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance)
Abstract
Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2–6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7–9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery–brain circuit (ABC): abdominal adventitia nociceptive afferents10–14 entered the central nervous system through spinal cord T6–T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.
Suggested Citation
Sarajo K. Mohanta & Li Peng & Yuanfang Li & Shu Lu & Ting Sun & Lorenzo Carnevale & Marialuisa Perrotta & Zhe Ma & Benjamin Förstera & Karen Stanic & Chuankai Zhang & Xi Zhang & Piotr Szczepaniak & Ma, 2022.
"Neuroimmune cardiovascular interfaces control atherosclerosis,"
Nature, Nature, vol. 605(7908), pages 152-159, May.
Handle:
RePEc:nat:nature:v:605:y:2022:i:7908:d:10.1038_s41586-022-04673-6
DOI: 10.1038/s41586-022-04673-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Xu Feng & Liwen Wang & Ruoyu Zhou & Rui Zhou & Linyun Chen & Hui Peng & Yan Huang & Qi Guo & Xianghang Luo & Haiyan Zhou, 2023.
"Senescent immune cells accumulation promotes brown adipose tissue dysfunction during aging,"
Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Shambhu Yadav & Markus Waldeck-Weiermair & Fotios Spyropoulos & Roderick Bronson & Arvind K. Pandey & Apabrita Ayan Das & Alexander C. Sisti & Taylor A. Covington & Venkata Thulabandu & Shari Caplan &, 2023.
"Sensory ataxia and cardiac hypertrophy caused by neurovascular oxidative stress in chemogenetic transgenic mouse lines,"
Nature Communications, Nature, vol. 14(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:605:y:2022:i:7908:d:10.1038_s41586-022-04673-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.