IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v605y2022i7908d10.1038_s41586-022-04520-8.html
   My bibliography  Save this article

Observation of chiral and slow plasmons in twisted bilayer graphene

Author

Listed:
  • Tianye Huang

    (Nanjing University)

  • Xuecou Tu

    (Nanjing University)

  • Changqing Shen

    (University of Electronic Science and Technology of China)

  • Binjie Zheng

    (Nanjing University)

  • Junzhuan Wang

    (Nanjing University)

  • Hao Wang

    (Beijing Computational Science Research Centre)

  • Kaveh Khaliji

    (University of Minnesota)

  • Sang Hyun Park

    (University of Minnesota)

  • Zhiyong Liu

    (Institute of Metal Research, Chinese Academy of Sciences)

  • Teng Yang

    (Institute of Metal Research, Chinese Academy of Sciences)

  • Zhidong Zhang

    (Institute of Metal Research, Chinese Academy of Sciences)

  • Lei Shao

    (Beijing Computational Science Research Centre)

  • Xuesong Li

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

  • Tony Low

    (University of Minnesota
    University of Minnesota)

  • Yi Shi

    (Nanjing University)

  • Xiaomu Wang

    (Nanjing University)

Abstract

Moiré superlattices have led to observations of exotic emergent electronic properties such as superconductivity and strong correlated states in small-rotation-angle twisted bilayer graphene (tBLG)1,2. Recently, these findings have inspired the search for new properties in moiré plasmons. Although plasmon propagation in the tBLG basal plane has been studied by near-field nano-imaging techniques3–7, the general electromagnetic character and properties of these plasmons remain elusive. Here we report the direct observation of two new plasmon modes in macroscopic tBLG with a highly ordered moiré superlattice. Using spiral structured nanoribbons of tBLG, we identify signatures of chiral plasmons that arise owing to the uncompensated Berry flux of the electron gas under optical pumping. The salient features of these chiral plasmons are shown through their dependence on optical pumping intensity and electron fillings, in conjunction with distinct resonance splitting and Faraday rotation coinciding with the spectral window of maximal Berry flux. Moreover, we also identify a slow plasmonic mode around 0.4 electronvolts, which stems from the interband transitions between the nested subbands in lattice-relaxed AB-stacked domains. This mode may open up opportunities for strong light–matter interactions within the highly sought after mid-wave infrared spectral window8. Our results unveil the new electromagnetic dynamics of small-angle tBLG and exemplify it as a unique quantum optical platform.

Suggested Citation

  • Tianye Huang & Xuecou Tu & Changqing Shen & Binjie Zheng & Junzhuan Wang & Hao Wang & Kaveh Khaliji & Sang Hyun Park & Zhiyong Liu & Teng Yang & Zhidong Zhang & Lei Shao & Xuesong Li & Tony Low & Yi S, 2022. "Observation of chiral and slow plasmons in twisted bilayer graphene," Nature, Nature, vol. 605(7908), pages 63-68, May.
  • Handle: RePEc:nat:nature:v:605:y:2022:i:7908:d:10.1038_s41586-022-04520-8
    DOI: 10.1038/s41586-022-04520-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04520-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04520-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiangtao Lv & Yingjie Wu & Jingying Liu & Youning Gong & Guangyuan Si & Guangwei Hu & Qing Zhang & Yupeng Zhang & Jian-Xin Tang & Michael S. Fuhrer & Hongsheng Chen & Stefan A. Maier & Cheng-Wei Qiu &, 2023. "Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Hao He & Maofeng Cao & Yun Gao & Peng Zheng & Sen Yan & Jin-Hui Zhong & Lei Wang & Dayong Jin & Bin Ren, 2024. "Noise learning of instruments for high-contrast, high-resolution and fast hyperspectral microscopy and nanoscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Hualiang Lv & Yuxing Yao & Mingyue Yuan & Guanyu Chen & Yuchao Wang & Longjun Rao & Shucong Li & Ufuoma I. Kara & Robert L. Dupont & Cheng Zhang & Boyuan Chen & Bo Liu & Xiaodi Zhou & Renbing Wu & Sol, 2024. "Functional nanoporous graphene superlattice," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:605:y:2022:i:7908:d:10.1038_s41586-022-04520-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.