Rare coding variants in ten genes confer substantial risk for schizophrenia
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-022-04556-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Ralda Nehme & Olli Pietiläinen & Mykyta Artomov & Matthew Tegtmeyer & Vera Valakh & Leevi Lehtonen & Christina Bell & Tarjinder Singh & Aditi Trehan & John Sherwood & Danielle Manning & Emily Peirent , 2022. "The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
- Sheng Wang & Belinda Wang & Vanessa Drury & Sam Drake & Nawei Sun & Hasan Alkhairo & Juan Arbelaez & Clif Duhn & Vanessa H. Bal & Kate Langley & Joanna Martin & Pieter J. Hoekstra & Andrea Dietrich & , 2023. "Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Ting Zhao & Yan Hong & Bowen Yan & Suming Huang & Guo-li Ming & Hongjun Song, 2024. "Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Rebecca Sebastian & Kang Jin & Narciso Pavon & Ruby Bansal & Andrew Potter & Yoonjae Song & Juliana Babu & Rafael Gabriel & Yubing Sun & Bruce Aronow & ChangHui Pak, 2023. "Schizophrenia-associated NRXN1 deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Liu Yang & Ya-Nan Ou & Bang-Sheng Wu & Wei-Shi Liu & Yue-Ting Deng & Xiao-Yu He & Yi-Lin Chen & Jujiao Kang & Chen-Jie Fei & Ying Zhu & Lan Tan & Qiang Dong & Jianfeng Feng & Wei Cheng & Jin-Tai Yu, 2024. "Large-scale whole-exome sequencing analyses identified protein-coding variants associated with immune-mediated diseases in 350,770 adults," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:604:y:2022:i:7906:d:10.1038_s41586-022-04556-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.