IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v602y2022i7897d10.1038_s41586-021-04138-2.html
   My bibliography  Save this article

Towards enduring autonomous robots via embodied energy

Author

Listed:
  • Cameron A. Aubin

    (Cornell University)

  • Benjamin Gorissen

    (Harvard University
    KU Leuven)

  • Edoardo Milana

    (KU Leuven)

  • Philip R. Buskohl

    (Air Force Research Laboratory)

  • Nathan Lazarus

    (Army Research Laboratory)

  • Geoffrey A. Slipher

    (Army Research Laboratory)

  • Christoph Keplinger

    (Max Planck Institute for Intelligent Systems)

  • Josh Bongard

    (University of Vermont)

  • Fumiya Iida

    (University of Cambridge)

  • Jennifer A. Lewis

    (Harvard University)

  • Robert F. Shepherd

    (Cornell University)

Abstract

Autonomous robots comprise actuation, energy, sensory and control systems built from materials and structures that are not necessarily designed and integrated for multifunctionality. Yet, animals and other organisms that robots strive to emulate contain highly sophisticated and interconnected systems at all organizational levels, which allow multiple functions to be performed simultaneously. Herein, we examine how system integration and multifunctionality in nature inspires a new paradigm for autonomous robots that we call Embodied Energy. Whereas most untethered robots use batteries to store energy and power their operation, recent advancements in energy-storage techniques enable chemical or electrical energy sources to be embodied directly within the structures and materials used to create robots, rather than requiring separate battery packs. This perspective highlights emerging examples of Embodied Energy in the context of developing autonomous robots.

Suggested Citation

  • Cameron A. Aubin & Benjamin Gorissen & Edoardo Milana & Philip R. Buskohl & Nathan Lazarus & Geoffrey A. Slipher & Christoph Keplinger & Josh Bongard & Fumiya Iida & Jennifer A. Lewis & Robert F. Shep, 2022. "Towards enduring autonomous robots via embodied energy," Nature, Nature, vol. 602(7897), pages 393-402, February.
  • Handle: RePEc:nat:nature:v:602:y:2022:i:7897:d:10.1038_s41586-021-04138-2
    DOI: 10.1038/s41586-021-04138-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04138-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04138-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Fan Yang & Thomas A. Berrueta & Allan M. Brooks & Albert Tianxiang Liu & Ge Zhang & David Gonzalez-Medrano & Sungyun Yang & Volodymyr B. Koman & Pavel Chvykov & Lexy N. LeMar & Marc Z. Miskin & T, 2022. "Emergent microrobotic oscillators via asymmetry-induced order," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yu-An Xiong & Sheng-Shun Duan & Hui-Hui Hu & Jie Yao & Qiang Pan & Tai-Ting Sha & Xiao Wei & Hao-Ran Ji & Jun Wu & Yu-Meng You, 2024. "Enhancement of phase transition temperature through hydrogen bond modification in molecular ferroelectrics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:602:y:2022:i:7897:d:10.1038_s41586-021-04138-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.