IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v602y2022i7896d10.1038_s41586-021-04392-4.html
   My bibliography  Save this article

Structure of a B12-dependent radical SAM enzyme in carbapenem biosynthesis

Author

Listed:
  • Hayley L. Knox

    (Pennsylvania State University)

  • Erica K. Sinner

    (Johns Hopkins University)

  • Craig A. Townsend

    (Johns Hopkins University)

  • Amie K. Boal

    (Pennsylvania State University
    Pennsylvania State University)

  • Squire J. Booker

    (Pennsylvania State University
    Pennsylvania State University
    Pennsylvania State University)

Abstract

Carbapenems are antibiotics of last resort in the clinic. Owing to their potency and broad-spectrum activity, they are an important part of the antibiotic arsenal. The vital role of carbapenems is exemplified by the approval acquired by Merck from the US Food and Drug Administration (FDA) for the use of an imipenem combination therapy to treat the increased levels of hospital-acquired and ventilator-associated bacterial pneumonia that have occurred during the COVID-19 pandemic1. The C6 hydroxyethyl side chain distinguishes the clinically used carbapenems from the other classes of β-lactam antibiotics and is responsible for their low susceptibility to inactivation by occluding water from the β-lactamase active site2. The construction of the C6 hydroxyethyl side chain is mediated by cobalamin- or B12-dependent radical S-adenosylmethionine (SAM) enzymes3. These radical SAM methylases (RSMTs) assemble the alkyl backbone by sequential methylation reactions, and thereby underlie the therapeutic usefulness of clinically used carbapenems. Here we present X-ray crystal structures of TokK, a B12-dependent RSMT that catalyses three-sequential methylations during the biosynthesis of asparenomycin A. These structures, which contain the two metallocofactors of the enzyme and were determined in the presence and absence of a carbapenam substrate, provide a visualization of a B12-dependent RSMT that uses the radical mechanism that is shared by most of these enzymes. The structures provide insight into the stereochemistry of initial C6 methylation and suggest that substrate positioning governs the rate of each methylation event.

Suggested Citation

  • Hayley L. Knox & Erica K. Sinner & Craig A. Townsend & Amie K. Boal & Squire J. Booker, 2022. "Structure of a B12-dependent radical SAM enzyme in carbapenem biosynthesis," Nature, Nature, vol. 602(7896), pages 343-348, February.
  • Handle: RePEc:nat:nature:v:602:y:2022:i:7896:d:10.1038_s41586-021-04392-4
    DOI: 10.1038/s41586-021-04392-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04392-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04392-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:602:y:2022:i:7896:d:10.1038_s41586-021-04392-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.