IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v602y2022i7895d10.1038_s41586-021-04268-7.html
   My bibliography  Save this article

Toroidal topology of population activity in grid cells

Author

Listed:
  • Richard J. Gardner

    (Norwegian University of Science and Technology)

  • Erik Hermansen

    (Norwegian University of Science and Technology)

  • Marius Pachitariu

    (HHMI Janelia Research Campus)

  • Yoram Burak

    (The Hebrew University of Jerusalem
    The Hebrew University of Jerusalem)

  • Nils A. Baas

    (Norwegian University of Science and Technology)

  • Benjamin A. Dunn

    (Norwegian University of Science and Technology
    Norwegian University of Science and Technology)

  • May-Britt Moser

    (Norwegian University of Science and Technology)

  • Edvard I. Moser

    (Norwegian University of Science and Technology)

Abstract

The medial entorhinal cortex is part of a neural system for mapping the position of an individual within a physical environment1. Grid cells, a key component of this system, fire in a characteristic hexagonal pattern of locations2, and are organized in modules3 that collectively form a population code for the animal’s allocentric position1. The invariance of the correlation structure of this population code across environments4,5 and behavioural states6,7, independent of specific sensory inputs, has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) as a possible substrate of the grid pattern1,8–11. However, whether grid cell networks show continuous attractor dynamics, and how they interface with inputs from the environment, has remained unclear owing to the small samples of cells obtained so far. Here, using simultaneous recordings from many hundreds of grid cells and subsequent topological data analysis, we show that the joint activity of grid cells from an individual module resides on a toroidal manifold, as expected in a two-dimensional CAN. Positions on the torus correspond to positions of the moving animal in the environment. Individual cells are preferentially active at singular positions on the torus. Their positions are maintained between environments and from wakefulness to sleep, as predicted by CAN models for grid cells but not by alternative feedforward models12. This demonstration of network dynamics on a toroidal manifold provides a population-level visualization of CAN dynamics in grid cells.

Suggested Citation

  • Richard J. Gardner & Erik Hermansen & Marius Pachitariu & Yoram Burak & Nils A. Baas & Benjamin A. Dunn & May-Britt Moser & Edvard I. Moser, 2022. "Toroidal topology of population activity in grid cells," Nature, Nature, vol. 602(7895), pages 123-128, February.
  • Handle: RePEc:nat:nature:v:602:y:2022:i:7895:d:10.1038_s41586-021-04268-7
    DOI: 10.1038/s41586-021-04268-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04268-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04268-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duy Duong-Tran & Ralph Kaufmann & Jiong Chen & Xuan Wang & Sumita Garai & Frederick H. Xu & Jingxuan Bao & Enrico Amico & Alan D. Kaplan & Giovanni Petri & Joaquin Goni & Yize Zhao & Li Shen, 2024. "Homological Landscape of Human Brain Functional Sub-Circuits," Mathematics, MDPI, vol. 12(3), pages 1-25, January.
    2. Joanna C. Chang & Matthew G. Perich & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2024. "De novo motor learning creates structure in neural activity that shapes adaptation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Francis Kei Masuda & Emily A. Aery Jones & Yanjun Sun & Lisa M. Giocomo, 2023. "Ketamine evoked disruption of entorhinal and hippocampal spatial maps," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Laurenz Muessig & Fabio Ribeiro Rodrigues & Tale L. Bjerknes & Benjamin W. Towse & Caswell Barry & Neil Burgess & Edvard I. Moser & May-Britt Moser & Francesca Cacucci & Thomas J. Wills, 2024. "Environment geometry alters subiculum boundary vector cell receptive fields in adulthood and early development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Erik Hermansen & David A. Klindt & Benjamin A. Dunn, 2024. "Uncovering 2-D toroidal representations in grid cell ensemble activity during 1-D behavior," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:602:y:2022:i:7895:d:10.1038_s41586-021-04268-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.