IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v600y2021i7889d10.1038_s41586-021-04177-9.html
   My bibliography  Save this article

Combinatorial, additive and dose-dependent drug–microbiome associations

Author

Listed:
  • Sofia K. Forslund

    (European Molecular Biology Laboratory
    Max Delbrück Center for Molecular Medicine (MDC)
    Charité–Universitätsmedizin Berlin
    Experimental and Clinical Research Center, A Cooperation of Charité–Universitätsmedizin and the Max-Delbrück Center)

  • Rima Chakaroun

    (University of Leipzig Medical Center)

  • Maria Zimmermann-Kogadeeva

    (European Molecular Biology Laboratory)

  • Lajos Markó

    (Max Delbrück Center for Molecular Medicine (MDC)
    Experimental and Clinical Research Center, A Cooperation of Charité–Universitätsmedizin and the Max-Delbrück Center
    Berlin Institute of Health (BIH))

  • Judith Aron-Wisnewsky

    (Sorbonne Université, INSERM
    Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital)

  • Trine Nielsen

    (University of Copenhagen)

  • Lucas Moitinho-Silva

    (European Molecular Biology Laboratory)

  • Thomas S. B. Schmidt

    (European Molecular Biology Laboratory)

  • Gwen Falony

    (KU Leuven)

  • Sara Vieira-Silva

    (KU Leuven)

  • Solia Adriouch

    (Sorbonne Université, INSERM)

  • Renato J. Alves

    (European Molecular Biology Laboratory)

  • Karen Assmann

    (Sorbonne Université, INSERM)

  • Jean-Philippe Bastard

    (Tenon Hospital
    Sorbonne Université, INSERM UMR S938)

  • Till Birkner

    (Max Delbrück Center for Molecular Medicine (MDC)
    Charité–Universitätsmedizin Berlin)

  • Robert Caesar

    (University of Gothenburg)

  • Julien Chilloux

    (Imperial College London)

  • Luis Pedro Coelho

    (European Molecular Biology Laboratory
    Fudan University
    and MOE Frontiers Center for Brain Science)

  • Leopold Fezeu

    (Sorbonne Paris Cité Epidemiology and Statistics Research Centre (CRESS), U1153 INSERM, U1125, INRA, CNAM, University of Paris 13)

  • Nathalie Galleron

    (Université Paris-Saclay)

  • Gerard Helft

    (Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital)

  • Richard Isnard

    (Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital)

  • Boyang Ji

    (Chalmers University of Technology)

  • Michael Kuhn

    (European Molecular Biology Laboratory)

  • Emmanuelle Le Chatelier

    (Université Paris-Saclay)

  • Antonis Myridakis

    (Imperial College London)

  • Lisa Olsson

    (University of Gothenburg)

  • Nicolas Pons

    (Université Paris-Saclay)

  • Edi Prifti

    (Sorbonne Université, INSERM
    Institute of Cardiometabolism and Nutrition
    Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO)

  • Benoit Quinquis

    (Université Paris-Saclay)

  • Hugo Roume

    (Université Paris-Saclay)

  • Joe-Elie Salem

    (Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris)

  • Nataliya Sokolovska

    (Sorbonne Université, INSERM)

  • Valentina Tremaroli

    (University of Gothenburg)

  • Mireia Valles-Colomer

    (KU Leuven)

  • Christian Lewinter

    (Rigshopitalet, University of Copenhagen)

  • Nadja B. Søndertoft

    (University of Copenhagen)

  • Helle Krogh Pedersen

    (University of Copenhagen)

  • Tue H. Hansen

    (University of Copenhagen)

  • Jens Peter Gøtze

    (Rigshopitalet, University of Copenhagen)

  • Lars Køber

    (Rigshopitalet, University of Copenhagen)

  • Henrik Vestergaard

    (University of Copenhagen
    Bornholms Hospital)

  • Torben Hansen

    (University of Copenhagen)

  • Jean-Daniel Zucker

    (Sorbonne Université, INSERM
    Institute of Cardiometabolism and Nutrition
    Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO)

  • Serge Hercberg

    (Sorbonne Paris Cité Epidemiology and Statistics Research Centre (CRESS), U1153 INSERM, U1125, INRA, CNAM, University of Paris 13)

  • Jean-Michel Oppert

    (Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital)

  • Ivica Letunic

    (European Molecular Biology Laboratory
    Biobyte Solutions)

  • Jens Nielsen

    (Chalmers University of Technology)

  • Fredrik Bäckhed

    (University of Copenhagen
    University of Gothenburg
    Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology)

  • S. Dusko Ehrlich

    (Université Paris-Saclay)

  • Marc-Emmanuel Dumas

    (Imperial College London
    McGill University and Genome Quebec Innovation Centre
    Imperial College London
    European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital, University of Lille)

  • Jeroen Raes

    (KU Leuven)

  • Oluf Pedersen

    (University of Copenhagen)

  • Karine Clément

    (Sorbonne Université, INSERM
    Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital)

  • Michael Stumvoll

    (University of Leipzig Medical Center
    University of Leipzig)

  • Peer Bork

    (European Molecular Biology Laboratory
    Charité–Universitätsmedizin Berlin
    University of Würzburg
    Yonsei University)

Abstract

During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1–5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug–host–microbiome interactions in cardiometabolic disease.

Suggested Citation

  • Sofia K. Forslund & Rima Chakaroun & Maria Zimmermann-Kogadeeva & Lajos Markó & Judith Aron-Wisnewsky & Trine Nielsen & Lucas Moitinho-Silva & Thomas S. B. Schmidt & Gwen Falony & Sara Vieira-Silva & , 2021. "Combinatorial, additive and dose-dependent drug–microbiome associations," Nature, Nature, vol. 600(7889), pages 500-505, December.
  • Handle: RePEc:nat:nature:v:600:y:2021:i:7889:d:10.1038_s41586-021-04177-9
    DOI: 10.1038/s41586-021-04177-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04177-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04177-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:600:y:2021:i:7889:d:10.1038_s41586-021-04177-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.