IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v599y2021i7886d10.1038_s41586-021-03999-x.html
   My bibliography  Save this article

On-chip electro-optic frequency shifters and beam splitters

Author

Listed:
  • Yaowen Hu

    (Harvard University
    Harvard University)

  • Mengjie Yu

    (Harvard University)

  • Di Zhu

    (Harvard University)

  • Neil Sinclair

    (Harvard University
    California Institute of Technology
    Alliance for Quantum Technologies (AQT))

  • Amirhassan Shams-Ansari

    (Harvard University)

  • Linbo Shao

    (Harvard University)

  • Jeffrey Holzgrafe

    (Harvard University)

  • Eric Puma

    (Harvard University)

  • Mian Zhang

    (HyperLight Corporation)

  • Marko Lončar

    (Harvard University)

Abstract

Efficient frequency shifting and beam splitting are important for a wide range of applications, including atomic physics1,2, microwave photonics3–6, optical communication7,8 and photonic quantum computing9–14. However, realizing gigahertz-scale frequency shifts with high efficiency, low loss and tunability—in particular using a miniature and scalable device—is challenging because it requires efficient and controllable nonlinear processes. Existing approaches based on acousto-optics6,15–17, all-optical wave mixing10,13,18–22 and electro-optics23–27 are either limited to low efficiencies or frequencies, or are bulky. Furthermore, most approaches are not bi-directional, which renders them unsuitable for frequency beam splitters. Here we demonstrate electro-optic frequency shifters that are controlled using only continuous and single-tone microwaves. This is accomplished by engineering the density of states of, and coupling between, optical modes in ultralow-loss waveguides and resonators in lithium niobate nanophotonics28. Our devices, consisting of two coupled ring-resonators, provide frequency shifts as high as 28 gigahertz with an on-chip conversion efficiency of approximately 90 per cent. Importantly, the devices can be reconfigured as tunable frequency-domain beam splitters. We also demonstrate a non-blocking and efficient swap of information between two frequency channels with one of the devices. Finally, we propose and demonstrate a scheme for cascaded frequency shifting that allows shifts of 119.2 gigahertz using a 29.8 gigahertz continuous and single-tone microwave signal. Our devices could become building blocks for future high-speed and large-scale classical information processors7,29 as well as emerging frequency-domain photonic quantum computers9,11,14.

Suggested Citation

  • Yaowen Hu & Mengjie Yu & Di Zhu & Neil Sinclair & Amirhassan Shams-Ansari & Linbo Shao & Jeffrey Holzgrafe & Eric Puma & Mian Zhang & Marko Lončar, 2021. "On-chip electro-optic frequency shifters and beam splitters," Nature, Nature, vol. 599(7886), pages 587-593, November.
  • Handle: RePEc:nat:nature:v:599:y:2021:i:7886:d:10.1038_s41586-021-03999-x
    DOI: 10.1038/s41586-021-03999-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03999-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03999-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Geng-Bo Wu & Jun Yan Dai & Kam Man Shum & Ka Fai Chan & Qiang Cheng & Tie Jun Cui & Chi Hou Chan, 2024. "A synthetic moving-envelope metasurface antenna for independent control of arbitrary harmonic orders," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yishu Zhou & Freek Ruesink & Margaret Pavlovich & Ryan Behunin & Haotian Cheng & Shai Gertler & Andrew L. Starbuck & Andrew J. Leenheer & Andrew T. Pomerene & Douglas C. Trotter & Katherine M. Musick , 2024. "Electrically interfaced Brillouin-active waveguide for microwave photonic measurements," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Siyu Duan & Xin Su & Hongsong Qiu & Yushun Jiang & Jingbo Wu & Kebin Fan & Caihong Zhang & Xiaoqing Jia & Guanghao Zhu & Lin Kang & Xinglong Wu & Huabing Wang & Keyu Xia & Biaobing Jin & Jian Chen & P, 2024. "Linear and phase controllable terahertz frequency conversion via ultrafast breaking the bond of a meta-molecule," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Avik Dutt & Luqi Yuan & Ki Youl Yang & Kai Wang & Siddharth Buddhiraju & Jelena Vučković & Shanhui Fan, 2022. "Creating boundaries along a synthetic frequency dimension," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:599:y:2021:i:7886:d:10.1038_s41586-021-03999-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.