KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-021-03994-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yanan Liu & Longmiao Hu & Zhengzhen Wu & Kun Yuan & Guangliang Hong & Zhengke Lian & Juanjuan Feng & Na Li & Dali Li & Jiemin Wong & Jiekai Chen & Mingyao Liu & Jiangping He & Xiufeng Pang, 2023. "Loss of PHF8 induces a viral mimicry response by activating endogenous retrotransposons," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Wenfeng Ren & Zilong Xu & Yating Chang & Fei Ju & Hongning Wu & Zhiqi Liang & Min Zhao & Naizhen Wang & Yanhua Lin & Chenhang Xu & Shengming Chen & Yipeng Rao & Chaolong Lin & Jianxin Yang & Pingguo L, 2024. "Pharmaceutical targeting of OTUB2 sensitizes tumors to cytotoxic T cells via degradation of PD-L1," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
- Cang Li & Zhengyu Wang & Licheng Yao & Xingyu Lin & Yongping Jian & Yujia Li & Jie Zhang & Jingwei Shao & Phuc D. Tran & James R. Hagman & Meng Cao & Yusheng Cong & Hong-yu Li & Colin R. Goding & Zhi-, 2024. "Mi-2β promotes immune evasion in melanoma by activating EZH2 methylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Hanhan Ning & Shan Huang & Yang Lei & Renyong Zhi & Han Yan & Jiaxing Jin & Zhenyu Hu & Kaimin Guo & Jinhua Liu & Jie Yang & Zhe Liu & Yi Ba & Xin Gao & Deqing Hu, 2022. "Enhancer decommissioning by MLL4 ablation elicits dsRNA-interferon signaling and GSDMD-mediated pyroptosis to potentiate anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
- Tiantian Jing & Dianhui Wei & Xiaoli Xu & Chengsi Wu & Lili Yuan & Yiwen Huang & Yizhen Liu & Yanyi Jiang & Boshi Wang, 2024. "Transposable elements-mediated recruitment of KDM1A epigenetically silences HNF4A expression to promote hepatocellular carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:598:y:2021:i:7882:d:10.1038_s41586-021-03994-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.