IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v598y2021i7881d10.1038_s41586-021-03954-w.html
   My bibliography  Save this article

Sensory processing during sleep in Drosophila melanogaster

Author

Listed:
  • Alice S. French

    (Imperial College London)

  • Quentin Geissmann

    (University of British Columbia)

  • Esteban J. Beckwith

    (Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET)

  • Giorgio F. Gilestro

    (Imperial College London)

Abstract

During sleep, most animal species enter a state of reduced consciousness characterized by a marked sensory disconnect. Yet some processing of the external world must remain intact, given that a sleeping animal can be awoken by intense stimuli (for example, a loud noise or a bright light) or by soft but qualitatively salient stimuli (for example, the sound of a baby cooing or hearing one’s own name1–3). How does a sleeping brain retain the ability to process the quality of sensory information? Here we present a paradigm to study the functional underpinnings of sensory discrimination during sleep in Drosophila melanogaster. We show that sleeping vinegar flies, like humans, discern the quality of sensory stimuli and are more likely to wake up in response to salient stimuli. We also show that the salience of a stimulus during sleep can be modulated by internal states. We offer a prototypical blueprint detailing a circuit involved in this process and its modulation as evidence that the system can be used to explore the cellular underpinnings of how a sleeping brain experiences the world.

Suggested Citation

  • Alice S. French & Quentin Geissmann & Esteban J. Beckwith & Giorgio F. Gilestro, 2021. "Sensory processing during sleep in Drosophila melanogaster," Nature, Nature, vol. 598(7881), pages 479-482, October.
  • Handle: RePEc:nat:nature:v:598:y:2021:i:7881:d:10.1038_s41586-021-03954-w
    DOI: 10.1038/s41586-021-03954-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03954-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03954-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michaela Joyce & Federica A. Falconio & Laurence Blackhurst & Lucia Prieto-Godino & Alice S. French & Giorgio F. Gilestro, 2024. "Divergent evolution of sleep in Drosophila species," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:598:y:2021:i:7881:d:10.1038_s41586-021-03954-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.