IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v598y2021i7880d10.1038_s41586-021-03914-4.html
   My bibliography  Save this article

Burden and characteristics of COVID-19 in the United States during 2020

Author

Listed:
  • Sen Pei

    (Mailman School of Public Health, Columbia University)

  • Teresa K. Yamana

    (Mailman School of Public Health, Columbia University)

  • Sasikiran Kandula

    (Mailman School of Public Health, Columbia University)

  • Marta Galanti

    (Mailman School of Public Health, Columbia University)

  • Jeffrey Shaman

    (Mailman School of Public Health, Columbia University)

Abstract

The COVID-19 pandemic disrupted health systems and economies throughout the world during 2020 and was particularly devastating for the United States, which experienced the highest numbers of reported cases and deaths during 20201–3. Many of the epidemiological features responsible for observed rates of morbidity and mortality have been reported4–8; however, the overall burden and characteristics of COVID-19 in the United States have not been comprehensively quantified. Here we use a data-driven model-inference approach to simulate the pandemic at county-scale in the United States during 2020 and estimate critical, time-varying epidemiological properties underpinning the dynamics of the virus. The pandemic in the United States during 2020 was characterized by national ascertainment rates that increased from 11.3% (95% credible interval (CI): 8.3–15.9%) in March to 24.5% (18.6–32.3%) during December. Population susceptibility at the end of the year was 69.0% (63.6–75.4%), indicating that about one third of the US population had been infected. Community infectious rates, the percentage of people harbouring a contagious infection, increased above 0.8% (0.6–1.0%) before the end of the year, and were as high as 2.4% in some major metropolitan areas. By contrast, the infection fatality rate fell to 0.3% by year’s end.

Suggested Citation

  • Sen Pei & Teresa K. Yamana & Sasikiran Kandula & Marta Galanti & Jeffrey Shaman, 2021. "Burden and characteristics of COVID-19 in the United States during 2020," Nature, Nature, vol. 598(7880), pages 338-341, October.
  • Handle: RePEc:nat:nature:v:598:y:2021:i:7880:d:10.1038_s41586-021-03914-4
    DOI: 10.1038/s41586-021-03914-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03914-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03914-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Zhang & Paul Bastard & Aurélie Cobat & Jean-Laurent Casanova, 2022. "Human genetic and immunological determinants of critical COVID-19 pneumonia," Nature, Nature, vol. 603(7902), pages 587-598, March.
    2. Sen Pei & Sasikiran Kandula & Jaime Cascante Vega & Wan Yang & Steffen Foerster & Corinne Thompson & Jennifer Baumgartner & Shama Desai Ahuja & Kathleen Blaney & Jay K. Varma & Theodore Long & Jeffrey, 2022. "Contact tracing reveals community transmission of COVID-19 in New York City," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Haobo Ni & Xiaoyan Cai & Jiarong Ren & Tingting Dai & Jiayi Zhou & Jiumin Lin & Li Wang & Lingxi Wang & Sen Pei & Yunchong Yao & Ting Xu & Lina Xiao & Qiyong Liu & Xiaobo Liu & Pi Guo, 2024. "Epidemiological characteristics and transmission dynamics of dengue fever in China," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Brazil, Noli & Chakalov, Bozhidar T. & Ko, Michelle, 2024. "The health implications of neighborhood networks based on daily mobility in US cities," Social Science & Medicine, Elsevier, vol. 354(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:598:y:2021:i:7880:d:10.1038_s41586-021-03914-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.