IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v598y2021i7880d10.1038_s41586-021-03868-7.html
   My bibliography  Save this article

Superior robustness of anomalous non-reciprocal topological edge states

Author

Listed:
  • Zhe Zhang

    (Laboratory of Wave Engineering, School of Electrical Engineering, EPFL)

  • Pierre Delplace

    (Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique)

  • Romain Fleury

    (Laboratory of Wave Engineering, School of Electrical Engineering, EPFL)

Abstract

Robustness against disorder and defects is a pivotal advantage of topological systems1, manifested by the absence of electronic backscattering in the quantum-Hall2 and spin-Hall effects3, and by unidirectional waveguiding in their classical analogues4,5. Two-dimensional (2D) topological insulators4–13, in particular, provide unprecedented opportunities in a variety of fields owing to their compact planar geometries, which are compatible with the fabrication technologies used in modern electronics and photonics. Among all 2D topological phases, Chern insulators14–25 are currently the most reliable designs owing to the genuine backscattering immunity of their non-reciprocal edge modes, brought via time-reversal symmetry breaking. Yet such resistance to fabrication tolerances is limited to fluctuations of the same order of magnitude as their bandgap, limiting their resilience to small perturbations only. Here we investigate the robustness problem in a system where edge transmission can survive disorder levels with strengths arbitrarily larger than the bandgap—an anomalous non-reciprocal topological network. We explore the general conditions needed to obtain such an unusual effect in systems made of unitary three-port non-reciprocal scatterers connected by phase links, and establish the superior robustness of anomalous edge transmission modes over Chern ones to phase-link disorder of arbitrarily large values. We confirm experimentally the exceptional resilience of the anomalous phase, and demonstrate its operation in various arbitrarily shaped disordered multi-port prototypes. Our results pave the way to efficient, arbitrary planar energy transport on 2D substrates for wave devices with full protection against large fabrication flaws or imperfections.

Suggested Citation

  • Zhe Zhang & Pierre Delplace & Romain Fleury, 2021. "Superior robustness of anomalous non-reciprocal topological edge states," Nature, Nature, vol. 598(7880), pages 293-297, October.
  • Handle: RePEc:nat:nature:v:598:y:2021:i:7880:d:10.1038_s41586-021-03868-7
    DOI: 10.1038/s41586-021-03868-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03868-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03868-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Xi & Bei Yan & Linyun Yang & Yan Meng & Zhen-Xiao Zhu & Jing-Ming Chen & Ziyao Wang & Peiheng Zhou & Perry Ping Shum & Yihao Yang & Hongsheng Chen & Subhaskar Mandal & Gui-Geng Liu & Baile Zhang, 2023. "Topological antichiral surface states in a magnetic Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Lianchao Wang & Julio A. Iglesias Martínez & Gwenn Ulliac & Bing Wang & Vincent Laude & Muamer Kadic, 2023. "Non-reciprocal and non-Newtonian mechanical metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Tiemo Pedergnana & Abel Faure-Beaulieu & Romain Fleury & Nicolas Noiray, 2024. "Loss-compensated non-reciprocal scattering based on synchronization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:598:y:2021:i:7880:d:10.1038_s41586-021-03868-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.